Skip to main content

OpenVINO(TM) Runtime

Project description

OpenVINO™

NOTE: The openvino-nightly PyPI module has been deprecated and will be discontinued with 2024.5 release. End-users should proceed with the Simple PyPI nightly repo instead. More information in Release Policy.

NOTE: This version is pre-release software and has not undergone full release validation or qualification. No support is offered on pre-release software and APIs/behavior are subject to change. It should NOT be incorporated into any production software/solution and instead should be used only for early testing and integration while awaiting a final release version of this software.

Intel® Distribution of OpenVINO™ toolkit is an open-source toolkit for optimizing and deploying AI inference. It can be used to develop applications and solutions based on deep learning tasks, such as: emulation of human vision, automatic speech recognition, natural language processing, recommendation systems, etc. It provides high-performance and rich deployment options, from edge to cloud.

If you have chosen a model, you can integrate it with your application through OpenVINO™ and deploy it on various devices. The OpenVINO™ Python package includes a set of libraries for easy inference integration with your products.

Commit used for current package: https://github.com/openvinotoolkit/openvino/commit/84e683737918e8169ec0fe05132c5157ece7754c

System Requirements

Before you start the installation, check the supported operating systems and required Python* versions. The complete list of supported hardware is available on the System Requirements page.

C++ libraries are also required for the installation on Windows*. To install that, you can download the Visual Studio Redistributable file (.exe).

NOTE: This package may work on other Linux and Windows versions but only the versions specified in system requirements are fully validated.

Install OpenVINO™

Step 1. Set Up Python Virtual Environment

Use a virtual environment to avoid dependency conflicts. To create a virtual environment, use the following commands:

On Windows:

python -m venv openvino_env

On Linux and macOS:

python3 -m venv openvino_env

NOTE: On Linux and macOS, you may need to install pip.

Step 2. Activate the Virtual Environment

On Windows:

openvino_env\Scripts\activate

On Linux and macOS:

source openvino_env/bin/activate

Step 3. Set Up and Update PIP to the Highest Version

Run the command below:

python -m pip install --upgrade pip

Step 4. Install the Package

Run the command below:

pip install openvino-nightly

Step 5. Verify that the Package Is Installed

Run the command below:

python -c "from openvino import Core; print(Core().available_devices)"

If installation was successful, you will see the list of available devices.

What's in the Package

Component Content Description
OpenVINO Runtime `openvino package` OpenVINO Runtime is a set of C++ libraries with C and Python bindings providing a common API to deliver inference solutions on the platform of your choice. Use the OpenVINO Runtime API to read PyTorch, TensorFlow, TensorFlow Lite, ONNX, and PaddlePaddle models and execute them on preferred devices. OpenVINO Runtime uses a plugin architecture and includes the following plugins: CPU, GPU, Auto Batch, Auto, Hetero,
OpenVINO Model Converter (OVC) `ovc` OpenVINO Model Converter converts models that were trained in popular frameworks to a format usable by OpenVINO components.
Supported frameworks include ONNX, TensorFlow, TensorFlow Lite, and PaddlePaddle.
Benchmark Tool `benchmark_app` Benchmark Application** allows you to estimate deep learning inference performance on supported devices for synchronous and asynchronous modes.

Troubleshooting

For general troubleshooting steps and issues, see Troubleshooting Guide for OpenVINO Installation. The following sections also provide explanations to several error messages.

Errors with Installing via PIP for Users in China

Users in China may encounter errors while downloading sources via PIP during OpenVINO™ installation. To resolve the issues, try the following solution:

  • Add the download source using the -i parameter with the Python pip command. For example:

    pip install openvino-nightly -i https://mirrors.aliyun.com/pypi/simple/
    

    Use the --trusted-host parameter if the URL above is http instead of https.

ERROR:root:Could not find OpenVINO Python API.

On Windows, additional libraries may be necessary to run OpenVINO. To resolve this issue, install the C++ redistributable (.exe). You can also view a full download list on the official support page.

ImportError: libpython3.8.so.1.0: cannot open shared object file: No such file or directory

To resolve missing external dependency on Ubuntu*, execute the following command:

sudo apt-get install libpython3.8

Additional Resources

Copyright © 2018-2024 Intel Corporation

LEGAL NOTICE: Your use of this software and any required dependent software (the “Software Package”) is subject to the terms and conditions of the Apache 2.0 License for the Software Package, which may also include notices, disclaimers, or license terms for third party or open source software included in or with the Software Package, and your use indicates your acceptance of all such terms. Please refer to the “third-party-programs.txt” or other similarly-named text file included with the Software Package for additional details.

Intel is committed to the respect of human rights and avoiding complicity in human rights abuses, a policy reflected in the Intel Global Human Rights Principles. Accordingly, by accessing the Intel material on this platform you agree that you will not use the material in a product or application that causes or contributes to a violation of an internationally recognized human right.

Intel, the Intel logo, and other Intel marks are trademarks of Intel Corporation or its subsidiaries. Other names and brands may be claimed as the property of others.

NOTE: This version is pre-release software and has not undergone full release validation or qualification. No support is offered on pre-release software and APIs/behavior are subject to change. It should NOT be incorporated into any production software/solution and instead should be used only for early testing and integration while awaiting a final release version of this software.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distributions

No source distribution files available for this release.See tutorial on generating distribution archives.

Built Distributions

openvino_nightly-2024.5.0.dev20241105-17277-cp312-cp312-win_amd64.whl (37.3 MB view details)

Uploaded CPython 3.12 Windows x86-64

openvino_nightly-2024.5.0.dev20241105-17277-cp312-cp312-manylinux_2_31_aarch64.whl (25.2 MB view details)

Uploaded CPython 3.12 manylinux: glibc 2.31+ ARM64

openvino_nightly-2024.5.0.dev20241105-17277-cp312-cp312-macosx_11_0_arm64.whl (29.1 MB view details)

Uploaded CPython 3.12 macOS 11.0+ ARM64

openvino_nightly-2024.5.0.dev20241105-17277-cp312-cp312-macosx_10_15_x86_64.whl (38.3 MB view details)

Uploaded CPython 3.12 macOS 10.15+ x86-64

openvino_nightly-2024.5.0.dev20241105-17277-cp311-cp311-win_amd64.whl (37.3 MB view details)

Uploaded CPython 3.11 Windows x86-64

openvino_nightly-2024.5.0.dev20241105-17277-cp311-cp311-manylinux_2_31_aarch64.whl (25.2 MB view details)

Uploaded CPython 3.11 manylinux: glibc 2.31+ ARM64

openvino_nightly-2024.5.0.dev20241105-17277-cp311-cp311-macosx_11_0_arm64.whl (29.1 MB view details)

Uploaded CPython 3.11 macOS 11.0+ ARM64

openvino_nightly-2024.5.0.dev20241105-17277-cp311-cp311-macosx_10_15_x86_64.whl (38.3 MB view details)

Uploaded CPython 3.11 macOS 10.15+ x86-64

openvino_nightly-2024.5.0.dev20241105-17277-cp310-cp310-win_amd64.whl (37.3 MB view details)

Uploaded CPython 3.10 Windows x86-64

openvino_nightly-2024.5.0.dev20241105-17277-cp310-cp310-manylinux_2_31_aarch64.whl (25.2 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.31+ ARM64

openvino_nightly-2024.5.0.dev20241105-17277-cp310-cp310-macosx_11_0_arm64.whl (29.1 MB view details)

Uploaded CPython 3.10 macOS 11.0+ ARM64

openvino_nightly-2024.5.0.dev20241105-17277-cp310-cp310-macosx_10_15_x86_64.whl (38.3 MB view details)

Uploaded CPython 3.10 macOS 10.15+ x86-64

openvino_nightly-2024.5.0.dev20241105-17277-cp39-cp39-win_amd64.whl (37.3 MB view details)

Uploaded CPython 3.9 Windows x86-64

openvino_nightly-2024.5.0.dev20241105-17277-cp39-cp39-manylinux_2_31_aarch64.whl (25.2 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.31+ ARM64

openvino_nightly-2024.5.0.dev20241105-17277-cp39-cp39-macosx_11_0_arm64.whl (29.1 MB view details)

Uploaded CPython 3.9 macOS 11.0+ ARM64

openvino_nightly-2024.5.0.dev20241105-17277-cp39-cp39-macosx_10_15_x86_64.whl (38.3 MB view details)

Uploaded CPython 3.9 macOS 10.15+ x86-64

File details

Details for the file openvino_nightly-2024.5.0.dev20241105-17277-cp312-cp312-win_amd64.whl.

File metadata

File hashes

Hashes for openvino_nightly-2024.5.0.dev20241105-17277-cp312-cp312-win_amd64.whl
Algorithm Hash digest
SHA256 88b8b72da9ce17e5f92e048569a69908d6cd2668d44907d37beb605687940db5
MD5 ccf8310cd9f977bb2197cb1307ea5292
BLAKE2b-256 22a64c570a037aae17411e40121f7ea78bf72565d7d2b3846f2de1ca749adb63

See more details on using hashes here.

File details

Details for the file openvino_nightly-2024.5.0.dev20241105-17277-cp312-cp312-manylinux_2_31_aarch64.whl.

File metadata

File hashes

Hashes for openvino_nightly-2024.5.0.dev20241105-17277-cp312-cp312-manylinux_2_31_aarch64.whl
Algorithm Hash digest
SHA256 9d7f0a10d9f5a2c5c597d7b5e1013182f3bf8094ea2569a3d8c53b9ecc9839e2
MD5 ab510c8fe9b73ca1f36caab0e0ebba47
BLAKE2b-256 982f771346062e903d271cb7376996b0477ad5347183aa4ee0bc78e7b64c2287

See more details on using hashes here.

File details

Details for the file openvino_nightly-2024.5.0.dev20241105-17277-cp312-cp312-manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for openvino_nightly-2024.5.0.dev20241105-17277-cp312-cp312-manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 7b007b64213ab268cc6a1d9ccda38c002659e0baa952385e9f13ca14adf8867c
MD5 09dd10b43df0d6e0a99d549316f77fc7
BLAKE2b-256 d9433c8a23c248acaff0c5cf180863d62b2825eb91a1f1a17e82ef23e82bcddd

See more details on using hashes here.

File details

Details for the file openvino_nightly-2024.5.0.dev20241105-17277-cp312-cp312-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for openvino_nightly-2024.5.0.dev20241105-17277-cp312-cp312-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 5509db805cbf1568202f3838319938e91c11190bff2360c01f5a4459c7ce2cb7
MD5 3be388d6f1c0130b9caba245a5e4d353
BLAKE2b-256 88bdac3067d7d0ea9aa7c9ff3b5c26e905b91f59d47dd89891116be97f7f7241

See more details on using hashes here.

File details

Details for the file openvino_nightly-2024.5.0.dev20241105-17277-cp312-cp312-macosx_10_15_x86_64.whl.

File metadata

File hashes

Hashes for openvino_nightly-2024.5.0.dev20241105-17277-cp312-cp312-macosx_10_15_x86_64.whl
Algorithm Hash digest
SHA256 6bdf7cc1e55434ca11fc34ce6763af3e82d70286c4ab486a60e4eee9e2e838b9
MD5 e8e5421d7d859abb3465bedcadb6ca51
BLAKE2b-256 66cd4261094630a1ae3e077030a906d7f2fbe32607f9cef166559eaa724de99d

See more details on using hashes here.

File details

Details for the file openvino_nightly-2024.5.0.dev20241105-17277-cp311-cp311-win_amd64.whl.

File metadata

File hashes

Hashes for openvino_nightly-2024.5.0.dev20241105-17277-cp311-cp311-win_amd64.whl
Algorithm Hash digest
SHA256 380a964cbcad228ef17dbffb4e6e4d100bc204700b26ae8fbf72e234b1e6749c
MD5 bde2ac3e8bff4e4353d809650909189b
BLAKE2b-256 5ac2bc3ab1b4397a96d1b66427a2ad14546535194c9d2fc08fa2dbe6f9dc609b

See more details on using hashes here.

File details

Details for the file openvino_nightly-2024.5.0.dev20241105-17277-cp311-cp311-manylinux_2_31_aarch64.whl.

File metadata

File hashes

Hashes for openvino_nightly-2024.5.0.dev20241105-17277-cp311-cp311-manylinux_2_31_aarch64.whl
Algorithm Hash digest
SHA256 d82c859f1c28ed0c0f7da3475055940c2cccdae47f843aed9ec83c0daea0f343
MD5 4a06d1af283aff7d4b5e394b7d1e2d6b
BLAKE2b-256 d65a6fedb1aebb9ccc4d29fee06d69383e9ab6c2b157809dfa1df49fabe01a9b

See more details on using hashes here.

File details

Details for the file openvino_nightly-2024.5.0.dev20241105-17277-cp311-cp311-manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for openvino_nightly-2024.5.0.dev20241105-17277-cp311-cp311-manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 dbf7eefd97b1ccb63617e82b93e24a5313418001d14866397aac8347082b852f
MD5 bd7727ae5dc96dd12262ff325c1db844
BLAKE2b-256 75d79ac8aed160097cb47ba38120d617d412bddc5b7dc6287a17dd82244db346

See more details on using hashes here.

File details

Details for the file openvino_nightly-2024.5.0.dev20241105-17277-cp311-cp311-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for openvino_nightly-2024.5.0.dev20241105-17277-cp311-cp311-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 c8c9c31ea9a47fac577d7502872a0f9fb1f38a80b20580ae7e4b51b5cb0fb894
MD5 73ac7c0618f3de99dc47ca6d7fe603a3
BLAKE2b-256 daa6e297d86cb16be4bf34fa9a18731454e16a3720c809193f9cde7b9bd31e39

See more details on using hashes here.

File details

Details for the file openvino_nightly-2024.5.0.dev20241105-17277-cp311-cp311-macosx_10_15_x86_64.whl.

File metadata

File hashes

Hashes for openvino_nightly-2024.5.0.dev20241105-17277-cp311-cp311-macosx_10_15_x86_64.whl
Algorithm Hash digest
SHA256 a6125cd50d7bb0499c6dd35eb58b20a95a7beecf234f8b14d268d5cecbc02b3b
MD5 fcb20f73db56d59b9339e60c3bf025e0
BLAKE2b-256 0cdcf29980d87a9727a6619ba48d45141c82c0855a894697f579eeacca7d4600

See more details on using hashes here.

File details

Details for the file openvino_nightly-2024.5.0.dev20241105-17277-cp310-cp310-win_amd64.whl.

File metadata

File hashes

Hashes for openvino_nightly-2024.5.0.dev20241105-17277-cp310-cp310-win_amd64.whl
Algorithm Hash digest
SHA256 8991b2cbb0567a225e779dc67e2054a37415f49c023844f20d22f8b9fded0069
MD5 107f05619199ff1529ff724cbda00ff6
BLAKE2b-256 13768b1b6eda50f2277a5fad6b20d38ee173ac8f90e902837214037d4de3021a

See more details on using hashes here.

File details

Details for the file openvino_nightly-2024.5.0.dev20241105-17277-cp310-cp310-manylinux_2_31_aarch64.whl.

File metadata

File hashes

Hashes for openvino_nightly-2024.5.0.dev20241105-17277-cp310-cp310-manylinux_2_31_aarch64.whl
Algorithm Hash digest
SHA256 6fa6339bd45b364219ed7aece8cfa3a36d8dc9018171d9e92623f3def7ba3f76
MD5 0acbc75ed1bf0b0ca3bef0dcfd7f74f4
BLAKE2b-256 a0a890abb209d4de445017dc0da65e9ad3681dd6541058a18d340651408df223

See more details on using hashes here.

File details

Details for the file openvino_nightly-2024.5.0.dev20241105-17277-cp310-cp310-manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for openvino_nightly-2024.5.0.dev20241105-17277-cp310-cp310-manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 69a53082ba07ff9ef83f7c23075dd66c658f81c5663b708e3490d5c6f678e39f
MD5 2a4d9e73c405bb9a9b6ba002041f664c
BLAKE2b-256 17aec7687f460360418c83c748b72f5bd221852a7bee1ca871d8574be55ed06c

See more details on using hashes here.

File details

Details for the file openvino_nightly-2024.5.0.dev20241105-17277-cp310-cp310-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for openvino_nightly-2024.5.0.dev20241105-17277-cp310-cp310-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 2559bd1e5d28c9e664b98fa7c581477a5d494e9a5192885e7a296b998de0e12f
MD5 78871fa507a830e25ca60422975b5140
BLAKE2b-256 c33db6ac259df0156d208b9619ba6697411cda2840dee2ade819b0657553ce41

See more details on using hashes here.

File details

Details for the file openvino_nightly-2024.5.0.dev20241105-17277-cp310-cp310-macosx_10_15_x86_64.whl.

File metadata

File hashes

Hashes for openvino_nightly-2024.5.0.dev20241105-17277-cp310-cp310-macosx_10_15_x86_64.whl
Algorithm Hash digest
SHA256 1ee45bd8f1fb3a3865bda7f237ec514488cae34d88aad517d8bed0f4bcd493f3
MD5 f1e7ac393f082627f1581ea6be236d25
BLAKE2b-256 d4252f94969cfad2686267b17297851a712fa05fc27c01fbf08bf9e1ec775c79

See more details on using hashes here.

File details

Details for the file openvino_nightly-2024.5.0.dev20241105-17277-cp39-cp39-win_amd64.whl.

File metadata

File hashes

Hashes for openvino_nightly-2024.5.0.dev20241105-17277-cp39-cp39-win_amd64.whl
Algorithm Hash digest
SHA256 d21ea43d9bf68b81d7b04c9d1800c4627faeda1a8c6efb95806b803f889d090a
MD5 dcd3158880b84dbb14d14d2318c6ad0b
BLAKE2b-256 cf3f7c1f75921d83e795592ca29a3750abb925cb22ea30cfe92ed5b4f8110f00

See more details on using hashes here.

File details

Details for the file openvino_nightly-2024.5.0.dev20241105-17277-cp39-cp39-manylinux_2_31_aarch64.whl.

File metadata

File hashes

Hashes for openvino_nightly-2024.5.0.dev20241105-17277-cp39-cp39-manylinux_2_31_aarch64.whl
Algorithm Hash digest
SHA256 64d969aa6710faef527e6de3198b09a1e363717aa0ec57489e438a0f4a52ff27
MD5 fe805f8104b269c7d6e25621b8701b99
BLAKE2b-256 430436ffd997e868924c6026c5abaed71831076dec5c97825f158688a46479bb

See more details on using hashes here.

File details

Details for the file openvino_nightly-2024.5.0.dev20241105-17277-cp39-cp39-manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for openvino_nightly-2024.5.0.dev20241105-17277-cp39-cp39-manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 ffe448cae7720f9a8aac1dc0f15a3949aa88525a740d3d0e40259124efa86cab
MD5 4eadf9f79de83ce9e0be5807e7bbdf15
BLAKE2b-256 dd0d47eefe1d6fad173a6ce44af5cedb8a0e0f563d39b186b10355badc151de3

See more details on using hashes here.

File details

Details for the file openvino_nightly-2024.5.0.dev20241105-17277-cp39-cp39-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for openvino_nightly-2024.5.0.dev20241105-17277-cp39-cp39-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 c2c51b646b7b695f3547cf572f155825bdf142980582ee64fd53b9783999e8ca
MD5 8fb20bf891db13ca1f4ca9ab9fd0a080
BLAKE2b-256 9606acf1c4030fed6fef53bbbc747421b4cd9d87536cc0ccb51e6397e0273874

See more details on using hashes here.

File details

Details for the file openvino_nightly-2024.5.0.dev20241105-17277-cp39-cp39-macosx_10_15_x86_64.whl.

File metadata

File hashes

Hashes for openvino_nightly-2024.5.0.dev20241105-17277-cp39-cp39-macosx_10_15_x86_64.whl
Algorithm Hash digest
SHA256 75d65b0d4a400b3dcb84612376f6570e2668c68875eb6f6754c79345fe5035d1
MD5 96f1c35a761a3cac899abb2b88837830
BLAKE2b-256 98e17dbb8a00f78116580a5612821a58591696a3eefa5f176fc759f8af1bcf45

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page