Skip to main content

OpenVINO(TM) Runtime

Project description

OpenVINO™

NOTE: This version is pre-release software and has not undergone full release validation or qualification. No support is offered on pre-release software and APIs/behavior are subject to change. It should NOT be incorporated into any production software/solution and instead should be used only for early testing and integration while awaiting a final release version of this software.

Intel® Distribution of OpenVINO™ toolkit is an open-source toolkit for optimizing and deploying AI inference. It can be used to develop applications and solutions based on deep learning tasks, such as: emulation of human vision, automatic speech recognition, natural language processing, recommendation systems, etc. It provides high-performance and rich deployment options, from edge to cloud.

If you have chosen a model, you can integrate it with your application through OpenVINO™ and deploy it on various devices. The OpenVINO™ Python package includes a set of libraries for easy inference integration with your products.

Commit used for current package: https://github.com/openvinotoolkit/openvino/commit/e3ad821bcca52b2ff86550d9354655f405f1e401

System Requirements

Before you start the installation, check the supported operating systems and required Python* versions. The complete list of supported hardware is available on the System Requirements page.

C++ libraries are also required for the installation on Windows*. To install that, you can download the Visual Studio Redistributable file (.exe).

NOTE: This package may work on other Linux and Windows versions but only the versions specified in system requirements are fully validated.

Install OpenVINO™

Step 1. Set Up Python Virtual Environment

Use a virtual environment to avoid dependency conflicts. To create a virtual environment, use the following commands:

On Windows:

python -m venv openvino_env

On Linux and macOS:

python3 -m venv openvino_env

NOTE: On Linux and macOS, you may need to install pip.

Step 2. Activate the Virtual Environment

On Windows:

openvino_env\Scripts\activate

On Linux and macOS:

source openvino_env/bin/activate

Step 3. Set Up and Update PIP to the Highest Version

Run the command below:

python -m pip install --upgrade pip

Step 4. Install the Package

Run the command below:

pip install openvino-nightly

Step 5. Verify that the Package Is Installed

Run the command below:

python -c "from openvino import Core; print(Core().available_devices)"

If installation was successful, you will see the list of available devices.

What's in the Package

Component Content Description
OpenVINO Runtime `openvino package` OpenVINO Runtime is a set of C++ libraries with C and Python bindings providing a common API to deliver inference solutions on the platform of your choice. Use the OpenVINO Runtime API to read PyTorch, TensorFlow, TensorFlow Lite, ONNX, and PaddlePaddle models and execute them on preferred devices. OpenVINO Runtime uses a plugin architecture and includes the following plugins: CPU, GPU, Auto Batch, Auto, Hetero,
OpenVINO Model Converter (OVC) `ovc` OpenVINO Model Converter converts models that were trained in popular frameworks to a format usable by OpenVINO components.
Supported frameworks include ONNX, TensorFlow, TensorFlow Lite, and PaddlePaddle.
Benchmark Tool `benchmark_app` Benchmark Application** allows you to estimate deep learning inference performance on supported devices for synchronous and asynchronous modes.

Troubleshooting

For general troubleshooting steps and issues, see Troubleshooting Guide for OpenVINO Installation. The following sections also provide explanations to several error messages.

Errors with Installing via PIP for Users in China

Users in China may encounter errors while downloading sources via PIP during OpenVINO™ installation. To resolve the issues, try the following solution:

  • Add the download source using the -i parameter with the Python pip command. For example:

    pip install openvino-nightly -i https://mirrors.aliyun.com/pypi/simple/
    

    Use the --trusted-host parameter if the URL above is http instead of https.

ERROR:root:Could not find OpenVINO Python API.

On Windows, additional libraries may be necessary to run OpenVINO. To resolve this issue, install the C++ redistributable (.exe). You can also view a full download list on the official support page.

ImportError: libpython3.8.so.1.0: cannot open shared object file: No such file or directory

To resolve missing external dependency on Ubuntu*, execute the following command:

sudo apt-get install libpython3.8

Additional Resources

Copyright © 2018-2024 Intel Corporation

LEGAL NOTICE: Your use of this software and any required dependent software (the “Software Package”) is subject to the terms and conditions of the Apache 2.0 License for the Software Package, which may also include notices, disclaimers, or license terms for third party or open source software included in or with the Software Package, and your use indicates your acceptance of all such terms. Please refer to the “third-party-programs.txt” or other similarly-named text file included with the Software Package for additional details.

Intel is committed to the respect of human rights and avoiding complicity in human rights abuses, a policy reflected in the Intel Global Human Rights Principles. Accordingly, by accessing the Intel material on this platform you agree that you will not use the material in a product or application that causes or contributes to a violation of an internationally recognized human right.

Intel, the Intel logo, and other Intel marks are trademarks of Intel Corporation or its subsidiaries. Other names and brands may be claimed as the property of others.

NOTE: This version is pre-release software and has not undergone full release validation or qualification. No support is offered on pre-release software and APIs/behavior are subject to change. It should NOT be incorporated into any production software/solution and instead should be used only for early testing and integration while awaiting a final release version of this software.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distributions

No source distribution files available for this release.See tutorial on generating distribution archives.

Built Distributions

openvino_nightly-2024.5.0.dev20241022-17093-cp312-cp312-win_amd64.whl (36.3 MB view details)

Uploaded CPython 3.12 Windows x86-64

openvino_nightly-2024.5.0.dev20241022-17093-cp312-cp312-manylinux_2_31_aarch64.whl (24.9 MB view details)

Uploaded CPython 3.12 manylinux: glibc 2.31+ ARM64

openvino_nightly-2024.5.0.dev20241022-17093-cp312-cp312-macosx_11_0_arm64.whl (28.7 MB view details)

Uploaded CPython 3.12 macOS 11.0+ ARM64

openvino_nightly-2024.5.0.dev20241022-17093-cp312-cp312-macosx_10_15_x86_64.whl (37.9 MB view details)

Uploaded CPython 3.12 macOS 10.15+ x86-64

openvino_nightly-2024.5.0.dev20241022-17093-cp311-cp311-win_amd64.whl (36.3 MB view details)

Uploaded CPython 3.11 Windows x86-64

openvino_nightly-2024.5.0.dev20241022-17093-cp311-cp311-manylinux_2_31_aarch64.whl (24.9 MB view details)

Uploaded CPython 3.11 manylinux: glibc 2.31+ ARM64

openvino_nightly-2024.5.0.dev20241022-17093-cp311-cp311-macosx_11_0_arm64.whl (28.7 MB view details)

Uploaded CPython 3.11 macOS 11.0+ ARM64

openvino_nightly-2024.5.0.dev20241022-17093-cp311-cp311-macosx_10_15_x86_64.whl (37.8 MB view details)

Uploaded CPython 3.11 macOS 10.15+ x86-64

openvino_nightly-2024.5.0.dev20241022-17093-cp310-cp310-win_amd64.whl (36.3 MB view details)

Uploaded CPython 3.10 Windows x86-64

openvino_nightly-2024.5.0.dev20241022-17093-cp310-cp310-manylinux_2_31_aarch64.whl (24.9 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.31+ ARM64

openvino_nightly-2024.5.0.dev20241022-17093-cp310-cp310-macosx_11_0_arm64.whl (28.7 MB view details)

Uploaded CPython 3.10 macOS 11.0+ ARM64

openvino_nightly-2024.5.0.dev20241022-17093-cp310-cp310-macosx_10_15_x86_64.whl (37.8 MB view details)

Uploaded CPython 3.10 macOS 10.15+ x86-64

openvino_nightly-2024.5.0.dev20241022-17093-cp39-cp39-win_amd64.whl (36.3 MB view details)

Uploaded CPython 3.9 Windows x86-64

openvino_nightly-2024.5.0.dev20241022-17093-cp39-cp39-manylinux_2_31_aarch64.whl (24.9 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.31+ ARM64

openvino_nightly-2024.5.0.dev20241022-17093-cp39-cp39-macosx_11_0_arm64.whl (28.7 MB view details)

Uploaded CPython 3.9 macOS 11.0+ ARM64

openvino_nightly-2024.5.0.dev20241022-17093-cp39-cp39-macosx_10_15_x86_64.whl (37.8 MB view details)

Uploaded CPython 3.9 macOS 10.15+ x86-64

File details

Details for the file openvino_nightly-2024.5.0.dev20241022-17093-cp312-cp312-win_amd64.whl.

File metadata

File hashes

Hashes for openvino_nightly-2024.5.0.dev20241022-17093-cp312-cp312-win_amd64.whl
Algorithm Hash digest
SHA256 867b25da3ba514c80b62abd1936a6b84d5a1bcc45257121583b0db5ced8f5060
MD5 023fc67d28f1025fed66d5cfe8a0b224
BLAKE2b-256 4eed4d485e557dd12adf843d4b2a5548fd5eca56030d647bcaafb2e1d5bfa5f2

See more details on using hashes here.

File details

Details for the file openvino_nightly-2024.5.0.dev20241022-17093-cp312-cp312-manylinux_2_31_aarch64.whl.

File metadata

File hashes

Hashes for openvino_nightly-2024.5.0.dev20241022-17093-cp312-cp312-manylinux_2_31_aarch64.whl
Algorithm Hash digest
SHA256 577e82b2ff3fa6adfd8eb1c3b7d8fb4e238f884b09773b613db4c5b76e4dc4ee
MD5 1becad5c61517a2620b9957b7a2aba36
BLAKE2b-256 b5753dbeb171bc35450035f3bfc50c5449f383273046158287f1e443c6878f63

See more details on using hashes here.

File details

Details for the file openvino_nightly-2024.5.0.dev20241022-17093-cp312-cp312-manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for openvino_nightly-2024.5.0.dev20241022-17093-cp312-cp312-manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 936c0f0cb722332a19d0cf8445664386a31a08182310a909e51afe94229f61c3
MD5 9f1d417254dd961d707b7c2736402b36
BLAKE2b-256 fcc083ce48ec757f92428a5ee125d09c99f06d12a2fcbf502030b7d51cc446fe

See more details on using hashes here.

File details

Details for the file openvino_nightly-2024.5.0.dev20241022-17093-cp312-cp312-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for openvino_nightly-2024.5.0.dev20241022-17093-cp312-cp312-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 e5cb6d1112b919cf99dc90c5b096f99c18da29fdf917029054f90057abe45990
MD5 f7b296b8c94b86ff3e5535f8e78dc865
BLAKE2b-256 ffe04634498827c2763b12e08e0a4c9bbbcf209f3a56973273bdd1a589586c70

See more details on using hashes here.

File details

Details for the file openvino_nightly-2024.5.0.dev20241022-17093-cp312-cp312-macosx_10_15_x86_64.whl.

File metadata

File hashes

Hashes for openvino_nightly-2024.5.0.dev20241022-17093-cp312-cp312-macosx_10_15_x86_64.whl
Algorithm Hash digest
SHA256 cd9cfd45d7d102a69212b1868cfb58dbc5c1246c6506318d2bde9599ca4c6b9c
MD5 f0749b7766ddcfa27ced240553384a0f
BLAKE2b-256 e9da6e7a5fac84e43e787e6d4355fce867cffe338c691db6a27f88d6cc907bae

See more details on using hashes here.

File details

Details for the file openvino_nightly-2024.5.0.dev20241022-17093-cp311-cp311-win_amd64.whl.

File metadata

File hashes

Hashes for openvino_nightly-2024.5.0.dev20241022-17093-cp311-cp311-win_amd64.whl
Algorithm Hash digest
SHA256 b2c9eacf878e4c7f66ed7dda011bb3d4c275312001975e174f3386612c2ea790
MD5 ce5073e011140e2ed8bc8b939147e655
BLAKE2b-256 c2c07fb2e5b64fbd7261df6163493708677c59d10f25c4d790fac59a4facef37

See more details on using hashes here.

File details

Details for the file openvino_nightly-2024.5.0.dev20241022-17093-cp311-cp311-manylinux_2_31_aarch64.whl.

File metadata

File hashes

Hashes for openvino_nightly-2024.5.0.dev20241022-17093-cp311-cp311-manylinux_2_31_aarch64.whl
Algorithm Hash digest
SHA256 8ab9e6a7256075e8595917d7afc50abcf0a3c9d967f93a14f1bc961cd3e7442a
MD5 387af5a6037d1e3c1757f7b446f49f8c
BLAKE2b-256 6054f33548cdeb07dfc47bba210f60ce2e838eeb6a4ba6d060ddca3e3d92da65

See more details on using hashes here.

File details

Details for the file openvino_nightly-2024.5.0.dev20241022-17093-cp311-cp311-manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for openvino_nightly-2024.5.0.dev20241022-17093-cp311-cp311-manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 25ca87ab77783edb52fb2cf0830079881b26cc680f883e3340a132738d4848a2
MD5 a4df1917564d066a28a69b716bf1325b
BLAKE2b-256 061ff4031929ed54a13ec8f23b31d8752475d5312d3cd88b777e4a45747be681

See more details on using hashes here.

File details

Details for the file openvino_nightly-2024.5.0.dev20241022-17093-cp311-cp311-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for openvino_nightly-2024.5.0.dev20241022-17093-cp311-cp311-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 62f85d5d8fdacace248c2d94011ca6964e77b493d3dab308bf54e1e0af5b922e
MD5 fc406d1999ce740ac3f670545711458d
BLAKE2b-256 e8b8f9db8f3c1a3068b8e299b6aedf6875c50009036d068c61dd2c8317f3263b

See more details on using hashes here.

File details

Details for the file openvino_nightly-2024.5.0.dev20241022-17093-cp311-cp311-macosx_10_15_x86_64.whl.

File metadata

File hashes

Hashes for openvino_nightly-2024.5.0.dev20241022-17093-cp311-cp311-macosx_10_15_x86_64.whl
Algorithm Hash digest
SHA256 0b650bde302c864ec2fd41bf70f8282ccdf79e7db7779a3d0f512a770f079fd5
MD5 7aee9c629af6f3d647c61b7c7c498c89
BLAKE2b-256 7411bf72b5bdc6fb905d9447bd46f68dc33a0b9bfe1a3010b75d4d9a2d658e35

See more details on using hashes here.

File details

Details for the file openvino_nightly-2024.5.0.dev20241022-17093-cp310-cp310-win_amd64.whl.

File metadata

File hashes

Hashes for openvino_nightly-2024.5.0.dev20241022-17093-cp310-cp310-win_amd64.whl
Algorithm Hash digest
SHA256 993b9ebc8595b31d07207edbe849770c3d90a0bb32c03b67706f1cbce67f201e
MD5 a178662386ab7534641a6ef8cde75eb1
BLAKE2b-256 d67e13b6d7054b58916dd01d3942c7cfe8691f48944691bd7a05811410c6c40d

See more details on using hashes here.

File details

Details for the file openvino_nightly-2024.5.0.dev20241022-17093-cp310-cp310-manylinux_2_31_aarch64.whl.

File metadata

File hashes

Hashes for openvino_nightly-2024.5.0.dev20241022-17093-cp310-cp310-manylinux_2_31_aarch64.whl
Algorithm Hash digest
SHA256 b7a67339c622219b91799ed6f7532c5999bc73296916660e4f825878dd695d78
MD5 9f42ee00c04c8c44b9cbde7ef91926ff
BLAKE2b-256 40840c80464aecbddd8af7ed80febd3502da1bdfb9676fe52a5725b9f841121f

See more details on using hashes here.

File details

Details for the file openvino_nightly-2024.5.0.dev20241022-17093-cp310-cp310-manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for openvino_nightly-2024.5.0.dev20241022-17093-cp310-cp310-manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 a7c32e04ace4dfd4f5f7b9610c62521644b82a774d1c94cc9a935233caa44d15
MD5 2476110929f851ce241dff9f5fbeb359
BLAKE2b-256 d133398dc9267b63aecdeebc19395b582b8a090aa78bc843f3c5f182179693c4

See more details on using hashes here.

File details

Details for the file openvino_nightly-2024.5.0.dev20241022-17093-cp310-cp310-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for openvino_nightly-2024.5.0.dev20241022-17093-cp310-cp310-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 df75a921118a305a92f2407cc9c4188e4701c294ee25b983eca6f6a83caebbb3
MD5 1169696f3f1426c1c06f28e156f6c319
BLAKE2b-256 fb28091dcd7ae9636547711491dd1d3419346ed7157f886980fc8de27969a0ba

See more details on using hashes here.

File details

Details for the file openvino_nightly-2024.5.0.dev20241022-17093-cp310-cp310-macosx_10_15_x86_64.whl.

File metadata

File hashes

Hashes for openvino_nightly-2024.5.0.dev20241022-17093-cp310-cp310-macosx_10_15_x86_64.whl
Algorithm Hash digest
SHA256 b510f4b8b4e65e9c2fbf2f6e28bc937ca206c15c46de6dc02db0793e00f30a9e
MD5 a265881547ebedd6b373eeae862f5fbc
BLAKE2b-256 39750254fcf9e41cd9d23db00266b53d6ae0112e762d466f3e51d70017b35700

See more details on using hashes here.

File details

Details for the file openvino_nightly-2024.5.0.dev20241022-17093-cp39-cp39-win_amd64.whl.

File metadata

File hashes

Hashes for openvino_nightly-2024.5.0.dev20241022-17093-cp39-cp39-win_amd64.whl
Algorithm Hash digest
SHA256 8be6075f4294481725b2ac4ccdbaf7372ca365737ff8f8666ccaa44d4e133e4a
MD5 394f9ce562737183b27631d263ba7073
BLAKE2b-256 7af5275a60bfa7380b775eae6d4b578cb904fb2b0feb2ad7daeb62fb7d7689f4

See more details on using hashes here.

File details

Details for the file openvino_nightly-2024.5.0.dev20241022-17093-cp39-cp39-manylinux_2_31_aarch64.whl.

File metadata

File hashes

Hashes for openvino_nightly-2024.5.0.dev20241022-17093-cp39-cp39-manylinux_2_31_aarch64.whl
Algorithm Hash digest
SHA256 f3ee3106af6b8884f9802f67c15979780b78a500d859d823057f9b68baf9ace4
MD5 3cbe99ed47656e8dbd9199797940ef78
BLAKE2b-256 ef872c81226caa02c6c3cca10e3552988ff741a0252aaa64debb35ffd566641d

See more details on using hashes here.

File details

Details for the file openvino_nightly-2024.5.0.dev20241022-17093-cp39-cp39-manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for openvino_nightly-2024.5.0.dev20241022-17093-cp39-cp39-manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 aa6385dfb54dde7c51b857f6a42264d64bc3facd6af6d4664aa8c1ed5d683add
MD5 9b7da133fd60798a559a909017f3e27f
BLAKE2b-256 2f222005cbf743ccc9b70a8d7c2878c6468c21df78e63b85c0cc4397df6c6401

See more details on using hashes here.

File details

Details for the file openvino_nightly-2024.5.0.dev20241022-17093-cp39-cp39-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for openvino_nightly-2024.5.0.dev20241022-17093-cp39-cp39-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 08a66f41041105290a37655b7c107617b0f8fd6a7be1a121f240267438059aaa
MD5 f1195db4de5c3fe1ba813f286e7a04c5
BLAKE2b-256 6f220a0ca92d289d6b67521a27b25051df318d5c7fd0dd6de5fbcd5c0130e8d3

See more details on using hashes here.

File details

Details for the file openvino_nightly-2024.5.0.dev20241022-17093-cp39-cp39-macosx_10_15_x86_64.whl.

File metadata

File hashes

Hashes for openvino_nightly-2024.5.0.dev20241022-17093-cp39-cp39-macosx_10_15_x86_64.whl
Algorithm Hash digest
SHA256 49d9382ecebf887de44bf211a0d59116b3a14ec6ff3f83e20287efcdcb8e3ccc
MD5 7341dbf272479b4b6340725485b2fbba
BLAKE2b-256 1bd18d80acebee97c336fa6a5e6c290e9e9de75f1e2f706275c7335e18793303

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page