Skip to main content

OpenVINO(TM) Runtime

Project description

OpenVINO™

NOTE: The openvino-nightly PyPI module has been deprecated and will be discontinued with 2024.5 release. End-users should proceed with the Simple PyPI nightly repo instead. More information in Release Policy.

NOTE: This version is pre-release software and has not undergone full release validation or qualification. No support is offered on pre-release software and APIs/behavior are subject to change. It should NOT be incorporated into any production software/solution and instead should be used only for early testing and integration while awaiting a final release version of this software.

Intel® Distribution of OpenVINO™ toolkit is an open-source toolkit for optimizing and deploying AI inference. It can be used to develop applications and solutions based on deep learning tasks, such as: emulation of human vision, automatic speech recognition, natural language processing, recommendation systems, etc. It provides high-performance and rich deployment options, from edge to cloud.

If you have chosen a model, you can integrate it with your application through OpenVINO™ and deploy it on various devices. The OpenVINO™ Python package includes a set of libraries for easy inference integration with your products.

System Requirements

Before you start the installation, check the supported operating systems and required Python* versions. The complete list of supported hardware is available on the System Requirements page.

C++ libraries are also required for the installation on Windows*. To install that, you can download the Visual Studio Redistributable file (.exe).

NOTE: This package may work on other Linux and Windows versions but only the versions specified in system requirements are fully validated.

Install OpenVINO™

Step 1. Set Up Python Virtual Environment

Use a virtual environment to avoid dependency conflicts. To create a virtual environment, use the following commands:

On Windows:

python -m venv openvino_env

On Linux and macOS:

python3 -m venv openvino_env

NOTE: On Linux and macOS, you may need to install pip.

Step 2. Activate the Virtual Environment

On Windows:

openvino_env\Scripts\activate

On Linux and macOS:

source openvino_env/bin/activate

Step 3. Set Up and Update PIP to the Highest Version

Run the command below:

python -m pip install --upgrade pip

Step 4. Install the Package

Run the command below:

pip install openvino-nightly

Step 5. Verify that the Package Is Installed

Run the command below:

python -c "from openvino import Core; print(Core().available_devices)"

If installation was successful, you will see the list of available devices.

What's in the Package

Component Content Description
OpenVINO Runtime `openvino package` OpenVINO Runtime is a set of C++ libraries with C and Python bindings providing a common API to deliver inference solutions on the platform of your choice. Use the OpenVINO Runtime API to read PyTorch, TensorFlow, TensorFlow Lite, ONNX, and PaddlePaddle models and execute them on preferred devices. OpenVINO Runtime uses a plugin architecture and includes the following plugins: CPU, GPU, Auto Batch, Auto, Hetero,
OpenVINO Model Converter (OVC) `ovc` OpenVINO Model Converter converts models that were trained in popular frameworks to a format usable by OpenVINO components.
Supported frameworks include ONNX, TensorFlow, TensorFlow Lite, and PaddlePaddle.
Benchmark Tool `benchmark_app` Benchmark Application** allows you to estimate deep learning inference performance on supported devices for synchronous and asynchronous modes.

Troubleshooting

For general troubleshooting steps and issues, see Troubleshooting Guide for OpenVINO Installation. The following sections also provide explanations to several error messages.

Errors with Installing via PIP for Users in China

Users in China may encounter errors while downloading sources via PIP during OpenVINO™ installation. To resolve the issues, try the following solution:

  • Add the download source using the -i parameter with the Python pip command. For example:

    pip install openvino-nightly -i https://mirrors.aliyun.com/pypi/simple/
    

    Use the --trusted-host parameter if the URL above is http instead of https.

ERROR:root:Could not find OpenVINO Python API.

On Windows, additional libraries may be necessary to run OpenVINO. To resolve this issue, install the C++ redistributable (.exe). You can also view a full download list on the official support page.

ImportError: libpython3.8.so.1.0: cannot open shared object file: No such file or directory

To resolve missing external dependency on Ubuntu*, execute the following command:

sudo apt-get install libpython3.8

Additional Resources

Copyright © 2018-2024 Intel Corporation

LEGAL NOTICE: Your use of this software and any required dependent software (the “Software Package”) is subject to the terms and conditions of the Apache 2.0 License for the Software Package, which may also include notices, disclaimers, or license terms for third party or open source software included in or with the Software Package, and your use indicates your acceptance of all such terms. Please refer to the “third-party-programs.txt” or other similarly-named text file included with the Software Package for additional details.

Intel is committed to the respect of human rights and avoiding complicity in human rights abuses, a policy reflected in the Intel Global Human Rights Principles. Accordingly, by accessing the Intel material on this platform you agree that you will not use the material in a product or application that causes or contributes to a violation of an internationally recognized human right.

Intel, the Intel logo, and other Intel marks are trademarks of Intel Corporation or its subsidiaries. Other names and brands may be claimed as the property of others.

NOTE: This version is pre-release software and has not undergone full release validation or qualification. No support is offered on pre-release software and APIs/behavior are subject to change. It should NOT be incorporated into any production software/solution and instead should be used only for early testing and integration while awaiting a final release version of this software.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distributions

No source distribution files available for this release.See tutorial on generating distribution archives.

Built Distributions

openvino_nightly-2024.5.0.dev20241028-17180-cp312-cp312-win_amd64.whl (37.2 MB view details)

Uploaded CPython 3.12 Windows x86-64

openvino_nightly-2024.5.0.dev20241028-17180-cp312-cp312-manylinux_2_31_aarch64.whl (25.0 MB view details)

Uploaded CPython 3.12 manylinux: glibc 2.31+ ARM64

openvino_nightly-2024.5.0.dev20241028-17180-cp312-cp312-macosx_11_0_arm64.whl (28.9 MB view details)

Uploaded CPython 3.12 macOS 11.0+ ARM64

openvino_nightly-2024.5.0.dev20241028-17180-cp312-cp312-macosx_10_15_x86_64.whl (38.1 MB view details)

Uploaded CPython 3.12 macOS 10.15+ x86-64

openvino_nightly-2024.5.0.dev20241028-17180-cp311-cp311-win_amd64.whl (37.2 MB view details)

Uploaded CPython 3.11 Windows x86-64

openvino_nightly-2024.5.0.dev20241028-17180-cp311-cp311-manylinux_2_31_aarch64.whl (25.0 MB view details)

Uploaded CPython 3.11 manylinux: glibc 2.31+ ARM64

openvino_nightly-2024.5.0.dev20241028-17180-cp311-cp311-macosx_11_0_arm64.whl (28.9 MB view details)

Uploaded CPython 3.11 macOS 11.0+ ARM64

openvino_nightly-2024.5.0.dev20241028-17180-cp311-cp311-macosx_10_15_x86_64.whl (38.1 MB view details)

Uploaded CPython 3.11 macOS 10.15+ x86-64

openvino_nightly-2024.5.0.dev20241028-17180-cp310-cp310-win_amd64.whl (37.2 MB view details)

Uploaded CPython 3.10 Windows x86-64

openvino_nightly-2024.5.0.dev20241028-17180-cp310-cp310-manylinux_2_31_aarch64.whl (25.0 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.31+ ARM64

openvino_nightly-2024.5.0.dev20241028-17180-cp310-cp310-macosx_11_0_arm64.whl (28.9 MB view details)

Uploaded CPython 3.10 macOS 11.0+ ARM64

openvino_nightly-2024.5.0.dev20241028-17180-cp310-cp310-macosx_10_15_x86_64.whl (38.1 MB view details)

Uploaded CPython 3.10 macOS 10.15+ x86-64

openvino_nightly-2024.5.0.dev20241028-17180-cp39-cp39-win_amd64.whl (37.2 MB view details)

Uploaded CPython 3.9 Windows x86-64

openvino_nightly-2024.5.0.dev20241028-17180-cp39-cp39-manylinux_2_31_aarch64.whl (25.0 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.31+ ARM64

openvino_nightly-2024.5.0.dev20241028-17180-cp39-cp39-macosx_11_0_arm64.whl (28.9 MB view details)

Uploaded CPython 3.9 macOS 11.0+ ARM64

openvino_nightly-2024.5.0.dev20241028-17180-cp39-cp39-macosx_10_15_x86_64.whl (38.1 MB view details)

Uploaded CPython 3.9 macOS 10.15+ x86-64

File details

Details for the file openvino_nightly-2024.5.0.dev20241028-17180-cp312-cp312-win_amd64.whl.

File metadata

File hashes

Hashes for openvino_nightly-2024.5.0.dev20241028-17180-cp312-cp312-win_amd64.whl
Algorithm Hash digest
SHA256 9be6881aa2be422c46683cb8fc0882583bd73ea76d0f37d57df157c6beb26212
MD5 273107cc3b04ab3d82b8a3acfd207d40
BLAKE2b-256 ee2e9aac5636620697bbb12ba1c9cb606487106512b66a282b1267cab4362392

See more details on using hashes here.

File details

Details for the file openvino_nightly-2024.5.0.dev20241028-17180-cp312-cp312-manylinux_2_31_aarch64.whl.

File metadata

File hashes

Hashes for openvino_nightly-2024.5.0.dev20241028-17180-cp312-cp312-manylinux_2_31_aarch64.whl
Algorithm Hash digest
SHA256 dec5c762f1d5a94c5a221ff1f9de3b7a090233bf0aa10508f40e91832a467209
MD5 371f23ba92015dcc16255d6b494b9ad4
BLAKE2b-256 ac16a6872304f230fe41f5c1c4da71f74beba5acc7d3d91c557288b8527175f2

See more details on using hashes here.

File details

Details for the file openvino_nightly-2024.5.0.dev20241028-17180-cp312-cp312-manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for openvino_nightly-2024.5.0.dev20241028-17180-cp312-cp312-manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 d6c0056474c7b7157f11f95a77059408e4ac218666ea16bed623698471b1a541
MD5 b9048da9d22f9b08c30c010e67139a93
BLAKE2b-256 aed0f65f9b8fd071cd288bd70a7798245b6be1cbb7c65db324c48fe5cbeda580

See more details on using hashes here.

File details

Details for the file openvino_nightly-2024.5.0.dev20241028-17180-cp312-cp312-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for openvino_nightly-2024.5.0.dev20241028-17180-cp312-cp312-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 58870c07a753763d5ef64da72921b65db7494020a6f2d0ad7c7505b362e51137
MD5 e4530388a8d90f671c8dd19fbc3dd261
BLAKE2b-256 4a085a4cf29e52572349b88b3528e2fb4ebb817b5ffb34a7a2cad0fc5d71fb98

See more details on using hashes here.

File details

Details for the file openvino_nightly-2024.5.0.dev20241028-17180-cp312-cp312-macosx_10_15_x86_64.whl.

File metadata

File hashes

Hashes for openvino_nightly-2024.5.0.dev20241028-17180-cp312-cp312-macosx_10_15_x86_64.whl
Algorithm Hash digest
SHA256 cb98a1720c8646993a323be0f479f9163b5cca0739c9898e4ef65820d77841c2
MD5 018ca96d6f0472f18b39d5c9c88d51c9
BLAKE2b-256 f4eeedf42a7adee12ad417c7345f10de0ea5772c85c6da22c3b9dc1b46b253ed

See more details on using hashes here.

File details

Details for the file openvino_nightly-2024.5.0.dev20241028-17180-cp311-cp311-win_amd64.whl.

File metadata

File hashes

Hashes for openvino_nightly-2024.5.0.dev20241028-17180-cp311-cp311-win_amd64.whl
Algorithm Hash digest
SHA256 0045c20187fe87c3ee6e01abfd55706ab1249d1a4c734b4b86a642124b7b6811
MD5 a845638c293315031e8eb2e9981fcb54
BLAKE2b-256 7eaab624bf76238d744412129afc01a231404e5eab4c22391915602e7142d694

See more details on using hashes here.

File details

Details for the file openvino_nightly-2024.5.0.dev20241028-17180-cp311-cp311-manylinux_2_31_aarch64.whl.

File metadata

File hashes

Hashes for openvino_nightly-2024.5.0.dev20241028-17180-cp311-cp311-manylinux_2_31_aarch64.whl
Algorithm Hash digest
SHA256 5334c1b038404d0da86f64002d0d75f4bcb5363ed9c380bdb4a6bac8f36d9b91
MD5 241a131d957fb0a560e231d6903974fd
BLAKE2b-256 5d4074aba8dc1dcd3fb2ae5bd64a90b59dcee3e31dd84be76e8f0023df6631a3

See more details on using hashes here.

File details

Details for the file openvino_nightly-2024.5.0.dev20241028-17180-cp311-cp311-manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for openvino_nightly-2024.5.0.dev20241028-17180-cp311-cp311-manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 aadb34d9157d0ed6a2274c019c5b4dfb86b0af0a28da2c377045231f178287f4
MD5 ec0fd6220355b15ae4d1991ef2a30fe9
BLAKE2b-256 0660d96a0756951615d959502efb72cf91bf85057a528f9ffb170f649f74f93e

See more details on using hashes here.

File details

Details for the file openvino_nightly-2024.5.0.dev20241028-17180-cp311-cp311-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for openvino_nightly-2024.5.0.dev20241028-17180-cp311-cp311-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 d2e87334ecab88f97c88651efaadafceae35725b394f8a28ef9f372f6b0c9979
MD5 7754bca38ce13389a2e00f103e4f412f
BLAKE2b-256 33d523f4267726486745ae59dbf083d21f23630b204d2e91f8d33c580e1fd83a

See more details on using hashes here.

File details

Details for the file openvino_nightly-2024.5.0.dev20241028-17180-cp311-cp311-macosx_10_15_x86_64.whl.

File metadata

File hashes

Hashes for openvino_nightly-2024.5.0.dev20241028-17180-cp311-cp311-macosx_10_15_x86_64.whl
Algorithm Hash digest
SHA256 69a87c0ec23c2b9907bd434b8f7f73a2245bda9e80c3496776807bf95d02be30
MD5 912f00f096acf166fd0edd8addb893e0
BLAKE2b-256 4cb45985d3df5ee6233fdfef816c48779db266ed8bd9d127c005a5a86fbacff0

See more details on using hashes here.

File details

Details for the file openvino_nightly-2024.5.0.dev20241028-17180-cp310-cp310-win_amd64.whl.

File metadata

File hashes

Hashes for openvino_nightly-2024.5.0.dev20241028-17180-cp310-cp310-win_amd64.whl
Algorithm Hash digest
SHA256 afcd110e7764589b017d18d5613a8e1ddb38ba62c5309db24ae74d79dc5bfc0a
MD5 0b58df6527cc292f8d8326679732ca32
BLAKE2b-256 b77519d7ef770fffa1cbfa33a0a529f6c88aef51164efcff0df57d3830a37473

See more details on using hashes here.

File details

Details for the file openvino_nightly-2024.5.0.dev20241028-17180-cp310-cp310-manylinux_2_31_aarch64.whl.

File metadata

File hashes

Hashes for openvino_nightly-2024.5.0.dev20241028-17180-cp310-cp310-manylinux_2_31_aarch64.whl
Algorithm Hash digest
SHA256 403fd3b03e7cb370ce8b740e16b9be82f170639c5006cbf8c9b521d617361a10
MD5 92fbfe70724df24a352a96f405284381
BLAKE2b-256 22e5d2d896488905186a36da0665887ae89d80b493dcb13c53564899f44e14a8

See more details on using hashes here.

File details

Details for the file openvino_nightly-2024.5.0.dev20241028-17180-cp310-cp310-manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for openvino_nightly-2024.5.0.dev20241028-17180-cp310-cp310-manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 fe9e3ed8b02ded633bc3d5ff2059647be85c8de97ea9595af6f851743b98c8ee
MD5 037287cad4dd34b97077f0a642ae064d
BLAKE2b-256 3e8a3d2cd7a2ca763a01975f25877b8211f343429c8cfbae22a4151de4fae353

See more details on using hashes here.

File details

Details for the file openvino_nightly-2024.5.0.dev20241028-17180-cp310-cp310-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for openvino_nightly-2024.5.0.dev20241028-17180-cp310-cp310-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 ce145f76c3cf0d3d60f35cd64878147f6a114469b500fa1edc9796168a5f83a1
MD5 dcb59a5c0546d6f6518ddf1a151b90d8
BLAKE2b-256 0c93841f71814f4b09d92ab6cf5f181bdbd4c667dbe1b27435eae5593c911907

See more details on using hashes here.

File details

Details for the file openvino_nightly-2024.5.0.dev20241028-17180-cp310-cp310-macosx_10_15_x86_64.whl.

File metadata

File hashes

Hashes for openvino_nightly-2024.5.0.dev20241028-17180-cp310-cp310-macosx_10_15_x86_64.whl
Algorithm Hash digest
SHA256 38b71adce2f3c91c25bf3a400088cf4a3de694bc3cb4c345f76e63a4743cc3bc
MD5 b5e5ed8e6835f00077fc4373ac3ab854
BLAKE2b-256 c746c62012be6be64fe84926668bd70d1a3db4785f2ed36b2113a8aefdd791b2

See more details on using hashes here.

File details

Details for the file openvino_nightly-2024.5.0.dev20241028-17180-cp39-cp39-win_amd64.whl.

File metadata

File hashes

Hashes for openvino_nightly-2024.5.0.dev20241028-17180-cp39-cp39-win_amd64.whl
Algorithm Hash digest
SHA256 f1fcb1b900392cc8614ea9815f836c56e8c4e19eb285dfbeca50cc49a5828f02
MD5 26fcdf2aca2b2e80b3ef4b8ae92f1764
BLAKE2b-256 f438a4feff9fd4cacc857e5dca794178a436c4adcbf8e039387f5923b9730c18

See more details on using hashes here.

File details

Details for the file openvino_nightly-2024.5.0.dev20241028-17180-cp39-cp39-manylinux_2_31_aarch64.whl.

File metadata

File hashes

Hashes for openvino_nightly-2024.5.0.dev20241028-17180-cp39-cp39-manylinux_2_31_aarch64.whl
Algorithm Hash digest
SHA256 c39804bdbb02ecc9a9c8b4b3fef1b4841f7eec7d4a832f588f1e4d8d675d5798
MD5 666cedf4d28ec0b4e8ee51a7c2729c31
BLAKE2b-256 a3049bd74fa46d494c4c186131229d24226e4ded0cc60f678faa44ea45346b4e

See more details on using hashes here.

File details

Details for the file openvino_nightly-2024.5.0.dev20241028-17180-cp39-cp39-manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for openvino_nightly-2024.5.0.dev20241028-17180-cp39-cp39-manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 cc3152d6b7e1648962b35c8ada53dffc4def50934bf0dae76a85f9ebea23c025
MD5 775bb0f8915dffbfa4d53b3e4ea619f7
BLAKE2b-256 2f800d085b99b0ff4a9620fbf4eceeb9482213570224bc53ca38f901fa4bb9a2

See more details on using hashes here.

File details

Details for the file openvino_nightly-2024.5.0.dev20241028-17180-cp39-cp39-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for openvino_nightly-2024.5.0.dev20241028-17180-cp39-cp39-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 99bef0d9c332dd5058e682e85a3d296d3cfdeb1a8b9d5addf9a3f9159777a647
MD5 6633b82fee68f8920db95b6a30edb40d
BLAKE2b-256 d233b472f578124b1336c317258f336c81b03f4285719bd4790d37ff02fcd99a

See more details on using hashes here.

File details

Details for the file openvino_nightly-2024.5.0.dev20241028-17180-cp39-cp39-macosx_10_15_x86_64.whl.

File metadata

File hashes

Hashes for openvino_nightly-2024.5.0.dev20241028-17180-cp39-cp39-macosx_10_15_x86_64.whl
Algorithm Hash digest
SHA256 369b3f2ce5ab9107aab6c425336d19f6a0499fac1a10473d1da5809906fa20e5
MD5 a1439d344cc14720cf20081f58ae836e
BLAKE2b-256 9fd486d641e720408dd6637066c997a1dfb98d0d06fb78db503ea88785274b39

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page