Skip to main content

OpenVINO(TM) Runtime

Project description

OpenVINO™

Intel® Distribution of OpenVINO™ toolkit is an open-source toolkit for optimizing and deploying AI inference. It can be used to develop applications and solutions based on deep learning tasks, such as: emulation of human vision, automatic speech recognition, natural language processing, recommendation systems, etc. It provides high-performance and rich deployment options, from edge to cloud.

If you have already finished developing your models and converting them to the OpenVINO model format, you can install OpenVINO Runtime to deploy your applications on various devices. The OpenVINO™ Python package includes a set of libraries for an easy inference integration with your products.

System Requirements

Before you start the installation, check the supported operating systems and required Python* versions. The complete list of supported hardware is available in the System Requirements.

C++ libraries are also required for the installation on Windows*. To install that, you can download the Visual Studio Redistributable file (.exe).

NOTE: This package can be installed on other versions of Linux and Windows OSes, but only the specific versions above are fully validated.

Install OpenVINO™

Step 1. Set Up Python Virtual Environment

Use a virtual environment to avoid dependency conflicts.

To create a virtual environment, use the following commands:

On Windows:

python -m venv openvino_env

On Linux and macOS:

python3 -m venv openvino_env

NOTE: On Linux and macOS, you may need to install pip. For example, on Ubuntu execute the following command to get pip installed: sudo apt install python3-venv python3-pip.

Step 2. Activate Virtual Environment

On Windows:

openvino_env\Scripts\activate

On Linux and macOS:

source openvino_env/bin/activate

Step 3. Set Up and Update PIP to the Highest Version

Run the command below:

python -m pip install --upgrade pip

Step 4. Install the Package

Run the command below:

pip install openvino

Step 5. Verify that the Package Is Installed

Run the command below:

python -c "from openvino.runtime import Core; print(Core().available_devices)"

If installation was successful, you will see the list of available devices.

What's in the Package

Component Content Description
OpenVINO Runtime openvino package OpenVINO Runtime is a set of C++ libraries with C and Python bindings providing a common API to deliver inference solutions on the platform of your choice. Use the OpenVINO Runtime API to read PyTorch*, TensorFlow*, TensorFlow Lite*, ONNX*, and PaddlePaddle* models and execute them on preferred devices. OpenVINO Runtime uses a plugin architecture and includes the following plugins: CPU, GPU, Auto Batch, Auto, Hetero.
OpenVINO Model Converter (OVC) ovc OpenVINO Model Converter converts models that were trained in popular frameworks to a format usable by OpenVINO components.
Supported frameworks include ONNX*, TensorFlow*, TensorFlow Lite*, and PaddlePaddle*.
Benchmark Tool benchmark_app Benchmark Application allows you to estimate deep learning inference performance on supported devices for synchronous and asynchronous modes.

Troubleshooting

For general troubleshooting steps and issues, see Troubleshooting Guide for OpenVINO Installation. The following sections also provide explanations to several error messages.

Errors with Installing via PIP for Users in China

Users in China might encounter errors while downloading sources via PIP during OpenVINO™ installation. To resolve the issues, try the following solution:

  • Add the download source using the -i parameter with the Python pip command. For example:

    pip install openvino -i https://mirrors.aliyun.com/pypi/simple/
    

    Use the --trusted-host parameter if the URL above is http instead of https.

ERROR:root:Could not find the Inference Engine or nGraph Python API.

On Windows*, some libraries are necessary to run OpenVINO. To resolve this issue, install the C++ redistributable (.exe). You can also view a full download list on the official support page.

ImportError: libpython3.8.so.1.0: cannot open shared object file: No such file or directory

To resolve missing external dependency on Ubuntu*, execute the following command:

sudo apt-get install libpython3.8

Additional Resources

Copyright © 2018-2023 Intel Corporation

LEGAL NOTICE: Your use of this software and any required dependent software (the “Software Package”) is subject to the terms and conditions of the Apache 2.0 License for the Software Package, which may also include notices, disclaimers, or license terms for third party or open source software included in or with the Software Package, and your use indicates your acceptance of all such terms. Please refer to the “third-party-programs.txt” or other similarly-named text file included with the Software Package for additional details.

Intel is committed to the respect of human rights and avoiding complicity in human rights abuses, a policy reflected in the Intel Global Human Rights Principles. Accordingly, by accessing the Intel material on this platform you agree that you will not use the material in a product or application that causes or contributes to a violation of an internationally recognized human right.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distributions

No source distribution files available for this release.See tutorial on generating distribution archives.

Built Distributions

openvino-2023.2.0-13089-cp311-cp311-win_amd64.whl (31.6 MB view details)

Uploaded CPython 3.11 Windows x86-64

openvino-2023.2.0-13089-cp311-cp311-manylinux_2_24_aarch64.whl (24.5 MB view details)

Uploaded CPython 3.11 manylinux: glibc 2.24+ ARM64

openvino-2023.2.0-13089-cp311-cp311-macosx_11_0_arm64.whl (21.8 MB view details)

Uploaded CPython 3.11 macOS 11.0+ ARM64

openvino-2023.2.0-13089-cp311-cp311-macosx_10_12_x86_64.whl (30.6 MB view details)

Uploaded CPython 3.11 macOS 10.12+ x86-64

openvino-2023.2.0-13089-cp310-cp310-win_amd64.whl (31.6 MB view details)

Uploaded CPython 3.10 Windows x86-64

openvino-2023.2.0-13089-cp310-cp310-manylinux_2_24_aarch64.whl (24.5 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.24+ ARM64

openvino-2023.2.0-13089-cp310-cp310-macosx_11_0_arm64.whl (21.7 MB view details)

Uploaded CPython 3.10 macOS 11.0+ ARM64

openvino-2023.2.0-13089-cp310-cp310-macosx_10_12_x86_64.whl (30.6 MB view details)

Uploaded CPython 3.10 macOS 10.12+ x86-64

openvino-2023.2.0-13089-cp39-cp39-win_amd64.whl (31.6 MB view details)

Uploaded CPython 3.9 Windows x86-64

openvino-2023.2.0-13089-cp39-cp39-manylinux_2_24_aarch64.whl (24.5 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.24+ ARM64

openvino-2023.2.0-13089-cp39-cp39-macosx_11_0_arm64.whl (21.7 MB view details)

Uploaded CPython 3.9 macOS 11.0+ ARM64

openvino-2023.2.0-13089-cp39-cp39-macosx_10_12_x86_64.whl (30.6 MB view details)

Uploaded CPython 3.9 macOS 10.12+ x86-64

openvino-2023.2.0-13089-cp38-cp38-win_amd64.whl (31.6 MB view details)

Uploaded CPython 3.8 Windows x86-64

openvino-2023.2.0-13089-cp38-cp38-manylinux_2_24_aarch64.whl (24.5 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.24+ ARM64

openvino-2023.2.0-13089-cp38-cp38-macosx_11_0_arm64.whl (21.7 MB view details)

Uploaded CPython 3.8 macOS 11.0+ ARM64

openvino-2023.2.0-13089-cp38-cp38-macosx_10_12_x86_64.whl (30.6 MB view details)

Uploaded CPython 3.8 macOS 10.12+ x86-64

File details

Details for the file openvino-2023.2.0-13089-cp311-cp311-win_amd64.whl.

File metadata

File hashes

Hashes for openvino-2023.2.0-13089-cp311-cp311-win_amd64.whl
Algorithm Hash digest
SHA256 cac7a91a2d0e073350c50cfecfdc6de748395597e22ec10285a8bd393786b5dd
MD5 59b95433608be907e17d0918fe55a084
BLAKE2b-256 131283b4420fdf6506ee06818423ce773640f0891259a458b60b00f53bcbf6ed

See more details on using hashes here.

File details

Details for the file openvino-2023.2.0-13089-cp311-cp311-manylinux_2_24_aarch64.whl.

File metadata

File hashes

Hashes for openvino-2023.2.0-13089-cp311-cp311-manylinux_2_24_aarch64.whl
Algorithm Hash digest
SHA256 32dcf9b20d83311e9c217dabd7bc587a2f09e587c089529739de69c41ad89cc5
MD5 32304d184d2bc9769ebe6274446acbe0
BLAKE2b-256 60063f85e0d42721c04f3d91b17afd8f3494cb941b3b6c873a827c1c50417b59

See more details on using hashes here.

File details

Details for the file openvino-2023.2.0-13089-cp311-cp311-manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for openvino-2023.2.0-13089-cp311-cp311-manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 9f757baeae0aabb602f63ef54169ce2a1e49fedfc91405f17b25a20ce67d9323
MD5 7a0f8f305d5fc6ebfea683c416cb3a0b
BLAKE2b-256 9c7494e57f02385269fd5bcee6a44b7e37f2e2a095410a63e83901ae98056191

See more details on using hashes here.

File details

Details for the file openvino-2023.2.0-13089-cp311-cp311-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for openvino-2023.2.0-13089-cp311-cp311-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 55de5e8fdf1e85b6f00c827237be33011ec3bf2049f63eec6d89533a5610d0e5
MD5 56654ce85b937e503887661dbf2aa328
BLAKE2b-256 801b66f97c8c7c318850438cfa1386dc512f8c8fc8921ee21752859af8f4a827

See more details on using hashes here.

File details

Details for the file openvino-2023.2.0-13089-cp311-cp311-macosx_10_12_x86_64.whl.

File metadata

File hashes

Hashes for openvino-2023.2.0-13089-cp311-cp311-macosx_10_12_x86_64.whl
Algorithm Hash digest
SHA256 64aefce363b207aaae2003d4e3580f50804494c061235f6a8b982cc0d9349728
MD5 7151d7a56c8dea6fa982881a71942718
BLAKE2b-256 d6170f5071cc4bcb802eac8b0e470abe0a47c819f42cd61ab8d87b174f72a359

See more details on using hashes here.

File details

Details for the file openvino-2023.2.0-13089-cp310-cp310-win_amd64.whl.

File metadata

File hashes

Hashes for openvino-2023.2.0-13089-cp310-cp310-win_amd64.whl
Algorithm Hash digest
SHA256 52cd6937f7351610d9e00e500eaae8638e3a71e807e64f7ced8a37f370eb241e
MD5 4693f7177df0fd8d1b99e7e7dae86a8a
BLAKE2b-256 8536a0aca01195d615e7e40101f9af0709189de9b3c70660744a6c54c1d79b25

See more details on using hashes here.

File details

Details for the file openvino-2023.2.0-13089-cp310-cp310-manylinux_2_24_aarch64.whl.

File metadata

File hashes

Hashes for openvino-2023.2.0-13089-cp310-cp310-manylinux_2_24_aarch64.whl
Algorithm Hash digest
SHA256 e1b59ce212697eedd09b042aff6a5cfde6851ed2cfea1e9348d152b847776574
MD5 c9e247ebeba09623afac0596f1aa4314
BLAKE2b-256 a6f48411ef774260540599436980259d6e34959ea2fccc9a51402cd555161daa

See more details on using hashes here.

File details

Details for the file openvino-2023.2.0-13089-cp310-cp310-manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for openvino-2023.2.0-13089-cp310-cp310-manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 3ae6e2f016d019a63b54e8b56d34e1dcc3887dfb86cc59655cd4d36adfb9ad00
MD5 2dab3ee087ba926b23b3934291307eb6
BLAKE2b-256 3b76d846d12954ac220c5c17f75e0936e64e440d3909207545012f80960e9598

See more details on using hashes here.

File details

Details for the file openvino-2023.2.0-13089-cp310-cp310-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for openvino-2023.2.0-13089-cp310-cp310-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 3414c8597dab939ca38dde47bf78afa3a98cac1c29a5b0b535aff18dd9f28b0a
MD5 3dc2ed0e1d8e2f16d55e707915626887
BLAKE2b-256 00267eb543208468d96b50d84e8d2b2bcdb4fd5ce7c942e5a1e28064839dd0e2

See more details on using hashes here.

File details

Details for the file openvino-2023.2.0-13089-cp310-cp310-macosx_10_12_x86_64.whl.

File metadata

File hashes

Hashes for openvino-2023.2.0-13089-cp310-cp310-macosx_10_12_x86_64.whl
Algorithm Hash digest
SHA256 1fea996b913233a99591efb04d3f8fcd6d29a7f9d2c8c71de3015f8a1d9eb0c1
MD5 c51273baab853d75d83c0bc309b1ba31
BLAKE2b-256 9d2f8261e71354eb6b49262e1d245288cc8edec14ea357c14c1a8c6bde377ea1

See more details on using hashes here.

File details

Details for the file openvino-2023.2.0-13089-cp39-cp39-win_amd64.whl.

File metadata

File hashes

Hashes for openvino-2023.2.0-13089-cp39-cp39-win_amd64.whl
Algorithm Hash digest
SHA256 c941a65bd9f8b1ddfa12ad3d93078d8ed087da2ae528c6bac9d60bf8477ed33c
MD5 899d927940e05fa6816a1fefc932ad7c
BLAKE2b-256 e1fadb13ec7d38e42e909bfacfd1f6631dbe9b25d2fc6dfa592f878ad96a3c86

See more details on using hashes here.

File details

Details for the file openvino-2023.2.0-13089-cp39-cp39-manylinux_2_24_aarch64.whl.

File metadata

File hashes

Hashes for openvino-2023.2.0-13089-cp39-cp39-manylinux_2_24_aarch64.whl
Algorithm Hash digest
SHA256 91223f1c516448088860681d05f986cf6999d56ccec7ca1ef23c233745f97042
MD5 6f2862e0ab6421acfe3d84a08630418e
BLAKE2b-256 d0de3b7fa7280a40b9d9e2a1f8b3809be4131bb51d4b35d7d5c0a7e02061352d

See more details on using hashes here.

File details

Details for the file openvino-2023.2.0-13089-cp39-cp39-manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for openvino-2023.2.0-13089-cp39-cp39-manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 dfd4cf70ce0c16ede7e43903167db1c6e469987d2cc980339f3e79f2ce786dd4
MD5 18e8311074519ed32b743b6f0fe0b5db
BLAKE2b-256 4acfc66ba998db33048b4ebaf9d1c0cb8b04c5a3f9be26a8e12540a99c3c1065

See more details on using hashes here.

File details

Details for the file openvino-2023.2.0-13089-cp39-cp39-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for openvino-2023.2.0-13089-cp39-cp39-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 630725ad308d8addb9ec9305182c3dc7ac42d01afff83d402e17a55469c27d9c
MD5 773f4ebb35e828bc0d4a52e10d82baae
BLAKE2b-256 b48f381d0ad721d29fcd63b58ff2c26f99217e090d88468dfa4188b2889a6aba

See more details on using hashes here.

File details

Details for the file openvino-2023.2.0-13089-cp39-cp39-macosx_10_12_x86_64.whl.

File metadata

File hashes

Hashes for openvino-2023.2.0-13089-cp39-cp39-macosx_10_12_x86_64.whl
Algorithm Hash digest
SHA256 7fafaad63f4269129db7a5a32d37cf69469250a0e9a42a3a174948525c4cafa8
MD5 8239a5cd1d37ba6b1460507b68ff94dc
BLAKE2b-256 67892fc46f576d90ae975727579f8a7a00241698d642376316dc28c011716c0c

See more details on using hashes here.

File details

Details for the file openvino-2023.2.0-13089-cp38-cp38-win_amd64.whl.

File metadata

File hashes

Hashes for openvino-2023.2.0-13089-cp38-cp38-win_amd64.whl
Algorithm Hash digest
SHA256 c1d88eb72086e75c2238420183da3611b748426d02d5a984d2aa2767638b8071
MD5 b2edb3d808b5d6c3a53a87659f5b7521
BLAKE2b-256 64626bbaaf4c50ddec371dbf1a15b0e921e6eda72d3090aa54b75a4323991312

See more details on using hashes here.

File details

Details for the file openvino-2023.2.0-13089-cp38-cp38-manylinux_2_24_aarch64.whl.

File metadata

File hashes

Hashes for openvino-2023.2.0-13089-cp38-cp38-manylinux_2_24_aarch64.whl
Algorithm Hash digest
SHA256 9213a4609e62cf7e3af067e752595c28317080e33a066aff5afb8cfb30ea7828
MD5 1ed500fbb8d1d9b31c38d0a1d971fcca
BLAKE2b-256 56a6e73987dc0969a38c1cb28a2c5717c997c6ec96f59c12455aafca9988f112

See more details on using hashes here.

File details

Details for the file openvino-2023.2.0-13089-cp38-cp38-manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for openvino-2023.2.0-13089-cp38-cp38-manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 20a91ed12fd18f7eb1f7164f9c5ad7e9433d5ef707867eca37ee15b3b13e750e
MD5 ae88df08c5a1d7ff6c6fbdd4b0e66060
BLAKE2b-256 e3e55b79fe306a9b435c1942f67386a052bba1c7814125eb6970a41f78b987f9

See more details on using hashes here.

File details

Details for the file openvino-2023.2.0-13089-cp38-cp38-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for openvino-2023.2.0-13089-cp38-cp38-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 a333b1fa509db8c5a482f65b34ff872841c6c747b780c8579fea8d1fceb07416
MD5 e8fc8e17622da12adf68a83faf8f4688
BLAKE2b-256 e7375a15f6d62dd90b746cdf1255d6c7da02c279120de6ed1adb430d659b0ddb

See more details on using hashes here.

File details

Details for the file openvino-2023.2.0-13089-cp38-cp38-macosx_10_12_x86_64.whl.

File metadata

File hashes

Hashes for openvino-2023.2.0-13089-cp38-cp38-macosx_10_12_x86_64.whl
Algorithm Hash digest
SHA256 2404a9b7d228feeecb6b9aff282338c2d72ea061117e57b9072dd42c9cbff9ea
MD5 1b13f3dd12764cd9bb8146a4db8432bf
BLAKE2b-256 ea8c9cf08be2793cbf06c3f3f43aa0e58cdf5fb6c59e564ccc51637609f56480

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page