Skip to main content

OpenVINO(TM) Runtime

Project description

OpenVINO™

Intel® Distribution of OpenVINO™ toolkit is an open-source toolkit for optimizing and deploying AI inference. It can be used to develop applications and solutions based on deep learning tasks, such as: emulation of human vision, automatic speech recognition, natural language processing, recommendation systems, etc. It provides high-performance and rich deployment options, from edge to cloud.

If you have already finished developing your models and converting them to the OpenVINO model format, you can install OpenVINO Runtime to deploy your applications on various devices. The OpenVINO™ Python package includes a set of libraries for an easy inference integration with your products.

System Requirements

Before you start the installation, check the supported operating systems and required Python* versions. The complete list of supported hardware is available in the System Requirements.

C++ libraries are also required for the installation on Windows*. To install that, you can download the Visual Studio Redistributable file (.exe).

NOTE: This package can be installed on other versions of Linux and Windows OSes, but only the specific versions above are fully validated.

Install OpenVINO™

Step 1. Set Up Python Virtual Environment

Use a virtual environment to avoid dependency conflicts.

To create a virtual environment, use the following commands:

On Windows:

python -m venv openvino_env

On Linux and macOS:

python3 -m venv openvino_env

NOTE: On Linux and macOS, you may need to install pip. For example, on Ubuntu execute the following command to get pip installed: sudo apt install python3-venv python3-pip.

Step 2. Activate Virtual Environment

On Windows:

openvino_env\Scripts\activate

On Linux and macOS:

source openvino_env/bin/activate

Step 3. Set Up and Update PIP to the Highest Version

Run the command below:

python -m pip install --upgrade pip

Step 4. Install the Package

Run the command below:

pip install openvino

Step 5. Verify that the Package Is Installed

Run the command below:

python -c "from openvino import Core; print(Core().available_devices)"

If installation was successful, you will see the list of available devices.

What's in the Package

Component Content Description
OpenVINO Runtime openvino package OpenVINO Runtime is a set of C++ libraries with C and Python bindings providing a common API to deliver inference solutions on the platform of your choice. Use the OpenVINO Runtime API to read PyTorch*, TensorFlow*, TensorFlow Lite*, ONNX*, and PaddlePaddle* models and execute them on preferred devices. OpenVINO Runtime uses a plugin architecture and includes the following plugins: CPU, GPU, Auto Batch, Auto, Hetero.
OpenVINO Model Converter (OVC) ovc OpenVINO Model Converter converts models that were trained in popular frameworks to a format usable by OpenVINO components.
Supported frameworks include ONNX*, TensorFlow*, TensorFlow Lite*, and PaddlePaddle*.
Benchmark Tool benchmark_app Benchmark Application allows you to estimate deep learning inference performance on supported devices for synchronous and asynchronous modes.

Troubleshooting

For general troubleshooting steps and issues, see Troubleshooting Guide for OpenVINO Installation. The following sections also provide explanations to several error messages.

Errors with Installing via PIP for Users in China

Users in China might encounter errors while downloading sources via PIP during OpenVINO™ installation. To resolve the issues, try the following solution:

  • Add the download source using the -i parameter with the Python pip command. For example:

    pip install openvino -i https://mirrors.aliyun.com/pypi/simple/
    

    Use the --trusted-host parameter if the URL above is http instead of https.

ERROR:root:Could not find the Inference Engine or nGraph Python API.

On Windows*, some libraries are necessary to run OpenVINO. To resolve this issue, install the C++ redistributable (.exe). You can also view a full download list on the official support page.

ImportError: libpython3.8.so.1.0: cannot open shared object file: No such file or directory

To resolve missing external dependency on Ubuntu*, execute the following command:

sudo apt-get install libpython3.8

Additional Resources

Copyright © 2018-2023 Intel Corporation

LEGAL NOTICE: Your use of this software and any required dependent software (the “Software Package”) is subject to the terms and conditions of the Apache 2.0 License for the Software Package, which may also include notices, disclaimers, or license terms for third party or open source software included in or with the Software Package, and your use indicates your acceptance of all such terms. Please refer to the “third-party-programs.txt” or other similarly-named text file included with the Software Package for additional details.

Intel is committed to the respect of human rights and avoiding complicity in human rights abuses, a policy reflected in the Intel Global Human Rights Principles. Accordingly, by accessing the Intel material on this platform you agree that you will not use the material in a product or application that causes or contributes to a violation of an internationally recognized human right.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distributions

No source distribution files available for this release.See tutorial on generating distribution archives.

Built Distributions

openvino-2023.3.0-13775-cp311-cp311-win_amd64.whl (32.2 MB view details)

Uploaded CPython 3.11 Windows x86-64

openvino-2023.3.0-13775-cp311-cp311-manylinux_2_27_aarch64.whl (25.6 MB view details)

Uploaded CPython 3.11 manylinux: glibc 2.27+ ARM64

openvino-2023.3.0-13775-cp311-cp311-macosx_11_0_arm64.whl (21.8 MB view details)

Uploaded CPython 3.11 macOS 11.0+ ARM64

openvino-2023.3.0-13775-cp311-cp311-macosx_10_12_x86_64.whl (31.1 MB view details)

Uploaded CPython 3.11 macOS 10.12+ x86-64

openvino-2023.3.0-13775-cp310-cp310-win_amd64.whl (32.2 MB view details)

Uploaded CPython 3.10 Windows x86-64

openvino-2023.3.0-13775-cp310-cp310-manylinux_2_27_aarch64.whl (25.6 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.27+ ARM64

openvino-2023.3.0-13775-cp310-cp310-macosx_11_0_arm64.whl (21.8 MB view details)

Uploaded CPython 3.10 macOS 11.0+ ARM64

openvino-2023.3.0-13775-cp310-cp310-macosx_10_12_x86_64.whl (31.1 MB view details)

Uploaded CPython 3.10 macOS 10.12+ x86-64

openvino-2023.3.0-13775-cp39-cp39-win_amd64.whl (32.2 MB view details)

Uploaded CPython 3.9 Windows x86-64

openvino-2023.3.0-13775-cp39-cp39-manylinux_2_27_aarch64.whl (25.6 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.27+ ARM64

openvino-2023.3.0-13775-cp39-cp39-macosx_11_0_arm64.whl (21.8 MB view details)

Uploaded CPython 3.9 macOS 11.0+ ARM64

openvino-2023.3.0-13775-cp39-cp39-macosx_10_12_x86_64.whl (31.1 MB view details)

Uploaded CPython 3.9 macOS 10.12+ x86-64

openvino-2023.3.0-13775-cp38-cp38-win_amd64.whl (32.2 MB view details)

Uploaded CPython 3.8 Windows x86-64

openvino-2023.3.0-13775-cp38-cp38-manylinux_2_27_aarch64.whl (25.6 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.27+ ARM64

openvino-2023.3.0-13775-cp38-cp38-macosx_11_0_arm64.whl (21.8 MB view details)

Uploaded CPython 3.8 macOS 11.0+ ARM64

openvino-2023.3.0-13775-cp38-cp38-macosx_10_12_x86_64.whl (31.1 MB view details)

Uploaded CPython 3.8 macOS 10.12+ x86-64

File details

Details for the file openvino-2023.3.0-13775-cp311-cp311-win_amd64.whl.

File metadata

File hashes

Hashes for openvino-2023.3.0-13775-cp311-cp311-win_amd64.whl
Algorithm Hash digest
SHA256 f7fd421f76eb1034066826afdd6e87b0766b33a7f83103c26f33ab054bb22017
MD5 871272632de1fd70f1458ab48306eb7c
BLAKE2b-256 2558a67f9b41edb22d50199e27530c703e813f77c5ea1fb0aaf0308e6b6ff6fe

See more details on using hashes here.

File details

Details for the file openvino-2023.3.0-13775-cp311-cp311-manylinux_2_27_aarch64.whl.

File metadata

File hashes

Hashes for openvino-2023.3.0-13775-cp311-cp311-manylinux_2_27_aarch64.whl
Algorithm Hash digest
SHA256 8aa0bb6b25e7d35d357aebe3ec249e766e44d80e6e6b25ed4029f183a6b08b6b
MD5 6a7cde1547579da9634102c91f95c597
BLAKE2b-256 761594d61822277bc4fa6e5cf174e5738fd7b674d8838132a64b110ecfb426c1

See more details on using hashes here.

File details

Details for the file openvino-2023.3.0-13775-cp311-cp311-manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for openvino-2023.3.0-13775-cp311-cp311-manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 79b9c583ba1b44984736db4d006fc34118eed1ca77aa63b290878abfb066501f
MD5 826cdaa2a98b09adb55b8807e94f5866
BLAKE2b-256 9ce09c2c00f042c45b391ba13ff8f7d5c08fc93d204ba011bf2667759ea6c890

See more details on using hashes here.

File details

Details for the file openvino-2023.3.0-13775-cp311-cp311-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for openvino-2023.3.0-13775-cp311-cp311-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 73991072162224823968f042d50aee16c06ff6bf585362980fd22123d08db627
MD5 88bfc02ea1d22e1cb38ac515fdb33ba4
BLAKE2b-256 5d65e62e435ce69c46c1347bfd46eb06ed3d54f755e8e4699a6c8e9c7547f8f5

See more details on using hashes here.

File details

Details for the file openvino-2023.3.0-13775-cp311-cp311-macosx_10_12_x86_64.whl.

File metadata

File hashes

Hashes for openvino-2023.3.0-13775-cp311-cp311-macosx_10_12_x86_64.whl
Algorithm Hash digest
SHA256 b0ad698b86b42773aa29c8e9cf3e9acc121cd9680aaa5647ab2838d5d979fbe1
MD5 3e94a0ca59c9a3cb2424bbc892de5e45
BLAKE2b-256 5b9def37d092f2193b464a4dca0c185f605d69b7a6c9ad7773ded481b8b2b7d3

See more details on using hashes here.

File details

Details for the file openvino-2023.3.0-13775-cp310-cp310-win_amd64.whl.

File metadata

File hashes

Hashes for openvino-2023.3.0-13775-cp310-cp310-win_amd64.whl
Algorithm Hash digest
SHA256 05cb6b99be3fc0848f29d9370ed9cb26014790ac5ed03d570432d4149b413ed8
MD5 78ea6eee83974ec8867ace07d5e22413
BLAKE2b-256 65e8c4b85ed97882d71c58e64016a5cf8dfb3365ec68c26f852d8dbfde710103

See more details on using hashes here.

File details

Details for the file openvino-2023.3.0-13775-cp310-cp310-manylinux_2_27_aarch64.whl.

File metadata

File hashes

Hashes for openvino-2023.3.0-13775-cp310-cp310-manylinux_2_27_aarch64.whl
Algorithm Hash digest
SHA256 a81971f8768a1e1b4b6b2cbaa4be0e5dbedf497b6d4787fea555ae980dd8653c
MD5 b1d742e303e22d50376fccbdd4a19d20
BLAKE2b-256 4cdb3ac5b6f2866e50e72610bebb83db79a18cc4e0a5e7c06cf5553eee4ac85f

See more details on using hashes here.

File details

Details for the file openvino-2023.3.0-13775-cp310-cp310-manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for openvino-2023.3.0-13775-cp310-cp310-manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 60a60c8a9db9800f6c49885ceed3f2d70101b1f57932523f512f6d8984862a32
MD5 89681f11257d459eed9e9ecd7205a73d
BLAKE2b-256 377549547d799b1034b891d2fdb29836d7d0a857b614ac83016d19cec4eb8db2

See more details on using hashes here.

File details

Details for the file openvino-2023.3.0-13775-cp310-cp310-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for openvino-2023.3.0-13775-cp310-cp310-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 8cd855c9c516423b1bbd8a5fe453176a5405e321e3e8c5b2ffe8e454b29cbe5d
MD5 ee1ef62f9b5c29d08bdd4b1697f7f37b
BLAKE2b-256 2779c2aa61dd71bbb359681ae1a1f59e361dc39569eea9014a05e3dc0b089e28

See more details on using hashes here.

File details

Details for the file openvino-2023.3.0-13775-cp310-cp310-macosx_10_12_x86_64.whl.

File metadata

File hashes

Hashes for openvino-2023.3.0-13775-cp310-cp310-macosx_10_12_x86_64.whl
Algorithm Hash digest
SHA256 386182f110f398ca11125b15394219f0564ec275bd86cb83e6442cb83c72cfa4
MD5 5f421d2fbb7343902b015ed99b686d1d
BLAKE2b-256 e042f728d6d0ab6202ec235afbb86d391a00ec81ce9f3902d7645bd8ce42453a

See more details on using hashes here.

File details

Details for the file openvino-2023.3.0-13775-cp39-cp39-win_amd64.whl.

File metadata

File hashes

Hashes for openvino-2023.3.0-13775-cp39-cp39-win_amd64.whl
Algorithm Hash digest
SHA256 82d3a9ef73d0a0c596937597a3be9f2b320cb1a14b958e2f2adbd2a9a924cb02
MD5 27ae7d4a06a7a3312124a402c937063c
BLAKE2b-256 27fc6749ea65338e1d37079b1b8505da07e71497b881650748afd2495c46760d

See more details on using hashes here.

File details

Details for the file openvino-2023.3.0-13775-cp39-cp39-manylinux_2_27_aarch64.whl.

File metadata

File hashes

Hashes for openvino-2023.3.0-13775-cp39-cp39-manylinux_2_27_aarch64.whl
Algorithm Hash digest
SHA256 c42dcc05adcb1457288bc963d5360043e9f6e78ae4cb3c889b5dba41d9eff4ed
MD5 4f7bc8d9f487fff345fe2bf04c2b3d8c
BLAKE2b-256 a5a0d75ea52ccbb0756afedc3f6f25c1a5b0a5c044f4f93b24c6eb1563102071

See more details on using hashes here.

File details

Details for the file openvino-2023.3.0-13775-cp39-cp39-manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for openvino-2023.3.0-13775-cp39-cp39-manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 6884a4afd473bd1acd2e5cef5c46bb180230e33a8215ef207f3128e124ad0dce
MD5 a28c3bd6d88f8a7beb9127d6a678c126
BLAKE2b-256 18246e7d15b16688fe4f373e113085ddf8769d2e4e122e297989f654042cd106

See more details on using hashes here.

File details

Details for the file openvino-2023.3.0-13775-cp39-cp39-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for openvino-2023.3.0-13775-cp39-cp39-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 03a740198ed444fbc1245dd82af5768bee92c2ff95dbce84090d73813e63b189
MD5 57f25c806938bfaf1f78845c62fd111e
BLAKE2b-256 9a1af9dfea831349cefdec0c22e64574a00970e4d3bb5a483af6d1d12d4e8347

See more details on using hashes here.

File details

Details for the file openvino-2023.3.0-13775-cp39-cp39-macosx_10_12_x86_64.whl.

File metadata

File hashes

Hashes for openvino-2023.3.0-13775-cp39-cp39-macosx_10_12_x86_64.whl
Algorithm Hash digest
SHA256 a5bfd4f49f93912ba228492f3b01827a6970b328d2ad789974f0f0836185bbb2
MD5 c33d6de42dc57116e7296a10770756f4
BLAKE2b-256 d6a8ca649bf768205bc936fa0e6b2557d0ffef15786ec13918dc19716707bd01

See more details on using hashes here.

File details

Details for the file openvino-2023.3.0-13775-cp38-cp38-win_amd64.whl.

File metadata

File hashes

Hashes for openvino-2023.3.0-13775-cp38-cp38-win_amd64.whl
Algorithm Hash digest
SHA256 f9bbcf986c310c10195c2189495744ca9068f0df3d410fcdffbfe5395381e5c0
MD5 5199495410e07e2d5120ef1314ff1ca2
BLAKE2b-256 952c6b918df24c4b2dc9a315831e526bad1fe7d4e0ab82a9d5250e085d312557

See more details on using hashes here.

File details

Details for the file openvino-2023.3.0-13775-cp38-cp38-manylinux_2_27_aarch64.whl.

File metadata

File hashes

Hashes for openvino-2023.3.0-13775-cp38-cp38-manylinux_2_27_aarch64.whl
Algorithm Hash digest
SHA256 b966187a03fdc43aa83bc4230db5f92f76602111894f66cafeb6ec9d5e29b8bf
MD5 fc153e2463212bb046bcf942bf9375d5
BLAKE2b-256 af27756fc7af7cead229c27d7ce4eda53950824f51aff471020155dbfa80f957

See more details on using hashes here.

File details

Details for the file openvino-2023.3.0-13775-cp38-cp38-manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for openvino-2023.3.0-13775-cp38-cp38-manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 1f4d0bb3ae9e763d5fe983e2396d798c7392dec10eb4b06d9e82ebf94a4cea97
MD5 8a01bd5012509385151ecf217d03c383
BLAKE2b-256 89c7c2fa4a741af9179a9e213f581de55e2900bf1757f27e753e4548c9fc9d48

See more details on using hashes here.

File details

Details for the file openvino-2023.3.0-13775-cp38-cp38-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for openvino-2023.3.0-13775-cp38-cp38-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 e1a126a8eb1eb494e656127a9d83b937f12e144c1241cc40d04d1712049b0e35
MD5 7aa56f1843432a4bb3612e00c5c1e2e7
BLAKE2b-256 b8a31c345e0ba0e68b2c124a8632a226996dc69bee5f442d9cb49e08bdffb72d

See more details on using hashes here.

File details

Details for the file openvino-2023.3.0-13775-cp38-cp38-macosx_10_12_x86_64.whl.

File metadata

File hashes

Hashes for openvino-2023.3.0-13775-cp38-cp38-macosx_10_12_x86_64.whl
Algorithm Hash digest
SHA256 dcd790751ca742ad8ad0ff8c91e554a1ab08ce48075f8f6dbbc6c8a326a75a6e
MD5 05d4f4595d1439addb6ebb6987552dc1
BLAKE2b-256 496a03f5427f9b656466491c28ba54b5f9fc6826baf304aa78df5a87f896caf5

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page