Skip to main content

OpenVINO(TM) Runtime

Project description

OpenVINO™

Intel® Distribution of OpenVINO™ toolkit is an open-source toolkit for optimizing and deploying AI inference. It can be used to develop applications and solutions based on deep learning tasks, such as: emulation of human vision, automatic speech recognition, natural language processing, recommendation systems, etc. It provides high-performance and rich deployment options, from edge to cloud.

If you have already finished developing your models and converting them to the OpenVINO model format, you can install OpenVINO Runtime to deploy your applications on various devices. The OpenVINO™ Python package includes a set of libraries for an easy inference integration with your products.

System Requirements

Before you start the installation, check the supported operating systems and required Python* versions. The complete list of supported hardware is available in the System Requirements.

C++ libraries are also required for the installation on Windows*. To install that, you can download the Visual Studio Redistributable file (.exe).

NOTE: This package can be installed on other versions of Linux and Windows OSes, but only the specific versions above are fully validated.

Install OpenVINO™

Step 1. Set Up Python Virtual Environment

Use a virtual environment to avoid dependency conflicts.

To create a virtual environment, use the following commands:

On Windows:

python -m venv openvino_env

On Linux and macOS:

python3 -m venv openvino_env

NOTE: On Linux and macOS, you may need to install pip. For example, on Ubuntu execute the following command to get pip installed: sudo apt install python3-venv python3-pip.

Step 2. Activate Virtual Environment

On Windows:

openvino_env\Scripts\activate

On Linux and macOS:

source openvino_env/bin/activate

Step 3. Set Up and Update PIP to the Highest Version

Run the command below:

python -m pip install --upgrade pip

Step 4. Install the Package

Run the command below:

pip install openvino

Step 5. Verify that the Package Is Installed

Run the command below:

python -c "from openvino import Core; print(Core().available_devices)"

If installation was successful, you will see the list of available devices.

What's in the Package

Component Content Description
OpenVINO Runtime openvino package OpenVINO Runtime is a set of C++ libraries with C and Python bindings providing a common API to deliver inference solutions on the platform of your choice. Use the OpenVINO Runtime API to read PyTorch*, TensorFlow*, TensorFlow Lite*, ONNX*, and PaddlePaddle* models and execute them on preferred devices. OpenVINO Runtime uses a plugin architecture and includes the following plugins: CPU, GPU, Auto Batch, Auto, Hetero.
OpenVINO Model Converter (OVC) ovc OpenVINO Model Converter converts models that were trained in popular frameworks to a format usable by OpenVINO components.
Supported frameworks include ONNX*, TensorFlow*, TensorFlow Lite*, and PaddlePaddle*.
Benchmark Tool benchmark_app Benchmark Application allows you to estimate deep learning inference performance on supported devices for synchronous and asynchronous modes.

Troubleshooting

For general troubleshooting steps and issues, see Troubleshooting Guide for OpenVINO Installation. The following sections also provide explanations to several error messages.

Errors with Installing via PIP for Users in China

Users in China might encounter errors while downloading sources via PIP during OpenVINO™ installation. To resolve the issues, try the following solution:

  • Add the download source using the -i parameter with the Python pip command. For example:

    pip install openvino -i https://mirrors.aliyun.com/pypi/simple/
    

    Use the --trusted-host parameter if the URL above is http instead of https.

ERROR:root:Could not find OpenVINO Python API.

On Windows*, some libraries are necessary to run OpenVINO. To resolve this issue, install the C++ redistributable (.exe). You can also view a full download list on the official support page.

ImportError: libpython3.8.so.1.0: cannot open shared object file: No such file or directory

To resolve missing external dependency on Ubuntu*, execute the following command:

sudo apt-get install libpython3.8

Additional Resources

Copyright © 2018-2024 Intel Corporation

LEGAL NOTICE: Your use of this software and any required dependent software (the “Software Package”) is subject to the terms and conditions of the Apache 2.0 License for the Software Package, which may also include notices, disclaimers, or license terms for third party or open source software included in or with the Software Package, and your use indicates your acceptance of all such terms. Please refer to the “third-party-programs.txt” or other similarly-named text file included with the Software Package for additional details.

Intel is committed to the respect of human rights and avoiding complicity in human rights abuses, a policy reflected in the Intel Global Human Rights Principles. Accordingly, by accessing the Intel material on this platform you agree that you will not use the material in a product or application that causes or contributes to a violation of an internationally recognized human right.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distributions

No source distribution files available for this release.See tutorial on generating distribution archives.

Built Distributions

openvino-2024.0.0-14509-cp311-cp311-win_amd64.whl (31.8 MB view details)

Uploaded CPython 3.11 Windows x86-64

openvino-2024.0.0-14509-cp311-cp311-manylinux_2_27_aarch64.whl (24.5 MB view details)

Uploaded CPython 3.11 manylinux: glibc 2.27+ ARM64

openvino-2024.0.0-14509-cp311-cp311-macosx_11_0_arm64.whl (20.7 MB view details)

Uploaded CPython 3.11 macOS 11.0+ ARM64

openvino-2024.0.0-14509-cp311-cp311-macosx_10_12_x86_64.whl (30.2 MB view details)

Uploaded CPython 3.11 macOS 10.12+ x86-64

openvino-2024.0.0-14509-cp310-cp310-win_amd64.whl (31.7 MB view details)

Uploaded CPython 3.10 Windows x86-64

openvino-2024.0.0-14509-cp310-cp310-manylinux_2_27_aarch64.whl (24.5 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.27+ ARM64

openvino-2024.0.0-14509-cp310-cp310-macosx_11_0_arm64.whl (20.7 MB view details)

Uploaded CPython 3.10 macOS 11.0+ ARM64

openvino-2024.0.0-14509-cp310-cp310-macosx_10_12_x86_64.whl (30.2 MB view details)

Uploaded CPython 3.10 macOS 10.12+ x86-64

openvino-2024.0.0-14509-cp39-cp39-win_amd64.whl (31.7 MB view details)

Uploaded CPython 3.9 Windows x86-64

openvino-2024.0.0-14509-cp39-cp39-manylinux_2_27_aarch64.whl (24.5 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.27+ ARM64

openvino-2024.0.0-14509-cp39-cp39-macosx_11_0_arm64.whl (20.7 MB view details)

Uploaded CPython 3.9 macOS 11.0+ ARM64

openvino-2024.0.0-14509-cp39-cp39-macosx_10_12_x86_64.whl (30.2 MB view details)

Uploaded CPython 3.9 macOS 10.12+ x86-64

openvino-2024.0.0-14509-cp38-cp38-win_amd64.whl (31.7 MB view details)

Uploaded CPython 3.8 Windows x86-64

openvino-2024.0.0-14509-cp38-cp38-manylinux_2_27_aarch64.whl (24.5 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.27+ ARM64

openvino-2024.0.0-14509-cp38-cp38-macosx_11_0_arm64.whl (20.7 MB view details)

Uploaded CPython 3.8 macOS 11.0+ ARM64

openvino-2024.0.0-14509-cp38-cp38-macosx_10_12_x86_64.whl (30.2 MB view details)

Uploaded CPython 3.8 macOS 10.12+ x86-64

File details

Details for the file openvino-2024.0.0-14509-cp311-cp311-win_amd64.whl.

File metadata

File hashes

Hashes for openvino-2024.0.0-14509-cp311-cp311-win_amd64.whl
Algorithm Hash digest
SHA256 8fbdbfcb03984c173c9ff1f404384b6f10c5d1bc6d1b5191d5d652f7e0c01acf
MD5 7332e39c2bbe913c88aef748eb4159bf
BLAKE2b-256 83c617f435b7d3fd50aefa4e95dd9f234efa761388a21fd972adbec22fd08aae

See more details on using hashes here.

File details

Details for the file openvino-2024.0.0-14509-cp311-cp311-manylinux_2_27_aarch64.whl.

File metadata

File hashes

Hashes for openvino-2024.0.0-14509-cp311-cp311-manylinux_2_27_aarch64.whl
Algorithm Hash digest
SHA256 f66a4c9dab2521ee27b7792f185d5e35c7c48dc44b971f9778793dbe320e6bc0
MD5 4c9d3f595cc4827f663cb718d60c9c0e
BLAKE2b-256 2512a472c8f345fbd28c2343b414592ee9fe05860798b86c72d51821d950e51c

See more details on using hashes here.

File details

Details for the file openvino-2024.0.0-14509-cp311-cp311-manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for openvino-2024.0.0-14509-cp311-cp311-manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 95b46e6cfcd655bd2dc72ce14f406d75717ccb1821db6611608ec4e538c21ccc
MD5 3f02cd4bc1c8ead814c2f02e8880913a
BLAKE2b-256 a5d1be5dabc0ab8754d37ac200b18720e2d46e3d57e627e17d0f5c6e14b252c7

See more details on using hashes here.

File details

Details for the file openvino-2024.0.0-14509-cp311-cp311-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for openvino-2024.0.0-14509-cp311-cp311-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 2f3ad363873c8c714b5b11e6e74a8ff3ab1bf4fcc3f85914cbdbb6f9bd3c8a7d
MD5 3083b517895dbfe0232bb40ed4e349fe
BLAKE2b-256 852d334e55090a0f50b5d7837d09be49d891187bb72a7d4c34a4dc3285225d35

See more details on using hashes here.

File details

Details for the file openvino-2024.0.0-14509-cp311-cp311-macosx_10_12_x86_64.whl.

File metadata

File hashes

Hashes for openvino-2024.0.0-14509-cp311-cp311-macosx_10_12_x86_64.whl
Algorithm Hash digest
SHA256 c839e41a7e853581fa0aa8a7613db87004a8b6b0fda4c184b69b921b6f2db20b
MD5 7633c600786b34a809208c65065af42b
BLAKE2b-256 aac494feb7976a8801ffc8abfd9d38450077a964c33b1751a321e0a8a3156189

See more details on using hashes here.

File details

Details for the file openvino-2024.0.0-14509-cp310-cp310-win_amd64.whl.

File metadata

File hashes

Hashes for openvino-2024.0.0-14509-cp310-cp310-win_amd64.whl
Algorithm Hash digest
SHA256 feab016abb8fd4516d17f6b6a4ced59b0969338ade8ce0c9c4dfc8bc0eec16f3
MD5 9aa6582e121b48d185118a7f0d1dbe69
BLAKE2b-256 058f3851b9a10f35625a149ac09e21a6ff4df29df689ae3c61133011cebafb39

See more details on using hashes here.

File details

Details for the file openvino-2024.0.0-14509-cp310-cp310-manylinux_2_27_aarch64.whl.

File metadata

File hashes

Hashes for openvino-2024.0.0-14509-cp310-cp310-manylinux_2_27_aarch64.whl
Algorithm Hash digest
SHA256 266e449c22f48a472cdef08bafc78a43b3fce1496ee7835e5b94b0a38fd948b7
MD5 f05ed62bc64faed39aee6259b5179e5e
BLAKE2b-256 c119b6db534b3f24e44e2df8ac89df614cad03084a9dfeb9b99b02b604806a95

See more details on using hashes here.

File details

Details for the file openvino-2024.0.0-14509-cp310-cp310-manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for openvino-2024.0.0-14509-cp310-cp310-manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 787496063a743da4cfd12ac01b2ade441e1693ce6c9b0c6dacf55dacff418413
MD5 3db7ceb57ad43c773c2319f51b82a0bd
BLAKE2b-256 93bd8c9e659708f9527f3b83dd689e7fa40137bd6242313da572943b3157679b

See more details on using hashes here.

File details

Details for the file openvino-2024.0.0-14509-cp310-cp310-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for openvino-2024.0.0-14509-cp310-cp310-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 a3df88deef01350f1600f53eb4e26f62d329df15674306dc910acb5c71d95bc1
MD5 01300a3bbcea1d1570db567243195a89
BLAKE2b-256 61b8c5f288eadce1057b25c1cb183c891264425e1f3276e5e64c39cd1d7586a0

See more details on using hashes here.

File details

Details for the file openvino-2024.0.0-14509-cp310-cp310-macosx_10_12_x86_64.whl.

File metadata

File hashes

Hashes for openvino-2024.0.0-14509-cp310-cp310-macosx_10_12_x86_64.whl
Algorithm Hash digest
SHA256 df12b97d25da5e1f7c339f3db390404dff1eda4eb115eaf78a011797a3267904
MD5 ed1b7d1e27923be325a9f30563774940
BLAKE2b-256 2ee463162f5475a2db1d54f895c367e3b948a0c52dff6222d23fef45d353246e

See more details on using hashes here.

File details

Details for the file openvino-2024.0.0-14509-cp39-cp39-win_amd64.whl.

File metadata

File hashes

Hashes for openvino-2024.0.0-14509-cp39-cp39-win_amd64.whl
Algorithm Hash digest
SHA256 154f6dbc297058ea14da17a012e508fdbffbfa88c1fdc17171daa76e4ccc6778
MD5 d6ef778119e6910437f28b3cb05f5375
BLAKE2b-256 f2ffd6628fddab100ce2a07e80fc6322d88a634abd3f23983fb0868faf468b24

See more details on using hashes here.

File details

Details for the file openvino-2024.0.0-14509-cp39-cp39-manylinux_2_27_aarch64.whl.

File metadata

File hashes

Hashes for openvino-2024.0.0-14509-cp39-cp39-manylinux_2_27_aarch64.whl
Algorithm Hash digest
SHA256 ac4f3dd0269feb4b704b4c702cfda36e429f0376aa1c7199205304ae13be9655
MD5 e1fda4582cd534a237cf86574398c709
BLAKE2b-256 accbf67a66d3a2b6ff98a147c3123bd06ebda1edacb6d9f604538c874140c30f

See more details on using hashes here.

File details

Details for the file openvino-2024.0.0-14509-cp39-cp39-manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for openvino-2024.0.0-14509-cp39-cp39-manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 d4f8e4b5979bc13d21f330977ef3c3c762a78521fe641fa34e8cd47c1befc9f4
MD5 f656ebcd8daa7031ce658a027b62a32f
BLAKE2b-256 651bf66905c041f066afefc12573fbf24b21f5f3785e270126459fbb6bb644ac

See more details on using hashes here.

File details

Details for the file openvino-2024.0.0-14509-cp39-cp39-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for openvino-2024.0.0-14509-cp39-cp39-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 984f27cb2973a62559d6e20c3c5577e1db9215cea84cbe31a18b6747681a190f
MD5 c57881afd4e6eeae4306c739ba0f27a0
BLAKE2b-256 ff70d6092432e528a8332a5b63cdcd5ae56dce5bc92750195d8692eeeec0694b

See more details on using hashes here.

File details

Details for the file openvino-2024.0.0-14509-cp39-cp39-macosx_10_12_x86_64.whl.

File metadata

File hashes

Hashes for openvino-2024.0.0-14509-cp39-cp39-macosx_10_12_x86_64.whl
Algorithm Hash digest
SHA256 6f10148cf0613cb3ea9c45ef4f13a25ffaf19cda82e02581354ba03fd5003008
MD5 baaa497a54e7eb1d8010a56f883398ba
BLAKE2b-256 72bbb74de1e474696bfa0ea0c0e62ad5c588619d6c776ce7678870a68c4025be

See more details on using hashes here.

File details

Details for the file openvino-2024.0.0-14509-cp38-cp38-win_amd64.whl.

File metadata

File hashes

Hashes for openvino-2024.0.0-14509-cp38-cp38-win_amd64.whl
Algorithm Hash digest
SHA256 5ef5d6b66488a728042c40317f0acd678f7a41bf51d5ec44727597e7e4a1ef99
MD5 69c1f146ba63ef3f9765488569440c4d
BLAKE2b-256 cb1d3390640d1e3818375837a1100104afd31d756735f2a9c793f075d3757108

See more details on using hashes here.

File details

Details for the file openvino-2024.0.0-14509-cp38-cp38-manylinux_2_27_aarch64.whl.

File metadata

File hashes

Hashes for openvino-2024.0.0-14509-cp38-cp38-manylinux_2_27_aarch64.whl
Algorithm Hash digest
SHA256 48c889e004dbab400178ed7ca5140fb858f1ad48cd27a370a99715103c76beaf
MD5 72d8713c0da720fc4bbc4b62d8fa9c50
BLAKE2b-256 b71b5e5aa4d80300da6c47f8ffe0dd3c74a3badf9000ae4b339d5001bb91b7a5

See more details on using hashes here.

File details

Details for the file openvino-2024.0.0-14509-cp38-cp38-manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for openvino-2024.0.0-14509-cp38-cp38-manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 39f6b2c099fedc9fa99fdddf7305f85aefe9addbf9fe406f1a6d4bf01d37a13f
MD5 44b3c5118c5078f006a6625aa38a7e50
BLAKE2b-256 e13ed90a99a94d8190edab9492ceb1ff4287565e58442f4ac958f297d69ddd14

See more details on using hashes here.

File details

Details for the file openvino-2024.0.0-14509-cp38-cp38-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for openvino-2024.0.0-14509-cp38-cp38-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 54b6bdeb08977a549851923c0a19ca81992ff8ca6d8a65c13c3a7482ec70720b
MD5 b37d101d932c6663e599f1fe6902be14
BLAKE2b-256 4268e2e91c1f93170e90f3d5d3cf2cbeb91abec2d774271f04d481dc89da2581

See more details on using hashes here.

File details

Details for the file openvino-2024.0.0-14509-cp38-cp38-macosx_10_12_x86_64.whl.

File metadata

File hashes

Hashes for openvino-2024.0.0-14509-cp38-cp38-macosx_10_12_x86_64.whl
Algorithm Hash digest
SHA256 dae8bf67528f792e73f554653c37ade4fde0ef7e0e8ced74ecb06687b2bc0798
MD5 7f0c798bf5915a6764a7557b137fa467
BLAKE2b-256 2718289e059846b447e6a2bcf99d23290875290e5a35044f02fc97cdaa16f388

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page