Skip to main content

OpenVINO(TM) Runtime

Project description

OpenVINO™

Intel® Distribution of OpenVINO™ toolkit is an open-source toolkit for optimizing and deploying AI inference. It can be used to develop applications and solutions based on deep learning tasks, such as: emulation of human vision, automatic speech recognition, natural language processing, recommendation systems, etc. It provides high-performance and rich deployment options, from edge to cloud.

If you have already finished developing your models and converting them to the OpenVINO model format, you can install OpenVINO Runtime to deploy your applications on various devices. The OpenVINO™ Python package includes a set of libraries for an easy inference integration with your products.

System Requirements

Before you start the installation, check the supported operating systems and required Python* versions. The complete list of supported hardware is available in the System Requirements.

C++ libraries are also required for the installation on Windows*. To install that, you can download the Visual Studio Redistributable file (.exe).

NOTE: This package can be installed on other versions of Linux and Windows OSes, but only the specific versions above are fully validated.

Install OpenVINO™

Step 1. Set Up Python Virtual Environment

Use a virtual environment to avoid dependency conflicts.

To create a virtual environment, use the following commands:

On Windows:

python -m venv openvino_env

On Linux and macOS:

python3 -m venv openvino_env

NOTE: On Linux and macOS, you may need to install pip. For example, on Ubuntu execute the following command to get pip installed: sudo apt install python3-venv python3-pip.

Step 2. Activate Virtual Environment

On Windows:

openvino_env\Scripts\activate

On Linux and macOS:

source openvino_env/bin/activate

Step 3. Set Up and Update PIP to the Highest Version

Run the command below:

python -m pip install --upgrade pip

Step 4. Install the Package

Run the command below:

pip install openvino

Step 5. Verify that the Package Is Installed

Run the command below:

python -c "from openvino import Core; print(Core().available_devices)"

If installation was successful, you will see the list of available devices.

What's in the Package

Component Content Description
OpenVINO Runtime openvino package OpenVINO Runtime is a set of C++ libraries with C and Python bindings providing a common API to deliver inference solutions on the platform of your choice. Use the OpenVINO Runtime API to read PyTorch*, TensorFlow*, TensorFlow Lite*, ONNX*, and PaddlePaddle* models and execute them on preferred devices. OpenVINO Runtime uses a plugin architecture and includes the following plugins: CPU, GPU, Auto Batch, Auto, Hetero.
OpenVINO Model Converter (OVC) ovc OpenVINO Model Converter converts models that were trained in popular frameworks to a format usable by OpenVINO components.
Supported frameworks include ONNX*, TensorFlow*, TensorFlow Lite*, and PaddlePaddle*.
Benchmark Tool benchmark_app Benchmark Application allows you to estimate deep learning inference performance on supported devices for synchronous and asynchronous modes.

Troubleshooting

For general troubleshooting steps and issues, see Troubleshooting Guide for OpenVINO Installation. The following sections also provide explanations to several error messages.

Errors with Installing via PIP for Users in China

Users in China might encounter errors while downloading sources via PIP during OpenVINO™ installation. To resolve the issues, try the following solution:

  • Add the download source using the -i parameter with the Python pip command. For example:

    pip install openvino -i https://mirrors.aliyun.com/pypi/simple/
    

    Use the --trusted-host parameter if the URL above is http instead of https.

ERROR:root:Could not find OpenVINO Python API.

On Windows*, some libraries are necessary to run OpenVINO. To resolve this issue, install the C++ redistributable (.exe). You can also view a full download list on the official support page.

ImportError: libpython3.8.so.1.0: cannot open shared object file: No such file or directory

To resolve missing external dependency on Ubuntu*, execute the following command:

sudo apt-get install libpython3.8

Additional Resources

Copyright © 2018-2024 Intel Corporation

LEGAL NOTICE: Your use of this software and any required dependent software (the “Software Package”) is subject to the terms and conditions of the Apache 2.0 License for the Software Package, which may also include notices, disclaimers, or license terms for third party or open source software included in or with the Software Package, and your use indicates your acceptance of all such terms. Please refer to the “third-party-programs.txt” or other similarly-named text file included with the Software Package for additional details.

Intel is committed to the respect of human rights and avoiding complicity in human rights abuses, a policy reflected in the Intel Global Human Rights Principles. Accordingly, by accessing the Intel material on this platform you agree that you will not use the material in a product or application that causes or contributes to a violation of an internationally recognized human right.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distributions

No source distribution files available for this release.See tutorial on generating distribution archives.

Built Distributions

openvino-2024.1.0-15008-cp312-cp312-win_amd64.whl (32.1 MB view details)

Uploaded CPython 3.12 Windows x86-64

openvino-2024.1.0-15008-cp312-cp312-manylinux_2_31_aarch64.whl (21.0 MB view details)

Uploaded CPython 3.12 manylinux: glibc 2.31+ ARM64

openvino-2024.1.0-15008-cp311-cp311-win_amd64.whl (32.1 MB view details)

Uploaded CPython 3.11 Windows x86-64

openvino-2024.1.0-15008-cp311-cp311-manylinux_2_31_aarch64.whl (21.0 MB view details)

Uploaded CPython 3.11 manylinux: glibc 2.31+ ARM64

openvino-2024.1.0-15008-cp311-cp311-macosx_11_0_arm64.whl (24.5 MB view details)

Uploaded CPython 3.11 macOS 11.0+ ARM64

openvino-2024.1.0-15008-cp311-cp311-macosx_10_12_x86_64.whl (33.8 MB view details)

Uploaded CPython 3.11 macOS 10.12+ x86-64

openvino-2024.1.0-15008-cp310-cp310-win_amd64.whl (32.1 MB view details)

Uploaded CPython 3.10 Windows x86-64

openvino-2024.1.0-15008-cp310-cp310-manylinux_2_31_aarch64.whl (21.0 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.31+ ARM64

openvino-2024.1.0-15008-cp310-cp310-macosx_11_0_arm64.whl (24.5 MB view details)

Uploaded CPython 3.10 macOS 11.0+ ARM64

openvino-2024.1.0-15008-cp310-cp310-macosx_10_12_x86_64.whl (33.8 MB view details)

Uploaded CPython 3.10 macOS 10.12+ x86-64

openvino-2024.1.0-15008-cp39-cp39-win_amd64.whl (32.1 MB view details)

Uploaded CPython 3.9 Windows x86-64

openvino-2024.1.0-15008-cp39-cp39-manylinux_2_31_aarch64.whl (21.0 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.31+ ARM64

openvino-2024.1.0-15008-cp39-cp39-macosx_11_0_arm64.whl (24.5 MB view details)

Uploaded CPython 3.9 macOS 11.0+ ARM64

openvino-2024.1.0-15008-cp39-cp39-macosx_10_12_x86_64.whl (33.8 MB view details)

Uploaded CPython 3.9 macOS 10.12+ x86-64

openvino-2024.1.0-15008-cp38-cp38-win_amd64.whl (32.1 MB view details)

Uploaded CPython 3.8 Windows x86-64

openvino-2024.1.0-15008-cp38-cp38-manylinux_2_31_aarch64.whl (21.0 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.31+ ARM64

openvino-2024.1.0-15008-cp38-cp38-macosx_11_0_arm64.whl (24.5 MB view details)

Uploaded CPython 3.8 macOS 11.0+ ARM64

openvino-2024.1.0-15008-cp38-cp38-macosx_10_12_x86_64.whl (33.8 MB view details)

Uploaded CPython 3.8 macOS 10.12+ x86-64

File details

Details for the file openvino-2024.1.0-15008-cp312-cp312-win_amd64.whl.

File metadata

File hashes

Hashes for openvino-2024.1.0-15008-cp312-cp312-win_amd64.whl
Algorithm Hash digest
SHA256 39e15fe608dc596c7cc37ba084084a68b4d163115ce8aaae1d7652249e96db33
MD5 881a8828cbbe5e56ef0b8380e8cb7e73
BLAKE2b-256 46911b7a2bfd6cff8db4f4a81266b445be03034f139cfc0aac7f2833f38a1899

See more details on using hashes here.

File details

Details for the file openvino-2024.1.0-15008-cp312-cp312-manylinux_2_31_aarch64.whl.

File metadata

File hashes

Hashes for openvino-2024.1.0-15008-cp312-cp312-manylinux_2_31_aarch64.whl
Algorithm Hash digest
SHA256 52dce193d6026e82f77d05198ca6d57209f036c1ca03c95d495a4057a7294f59
MD5 02377239e18705a3f9b437f2b5f95a0e
BLAKE2b-256 13f81f78bc928bd63e64a96a301939708e0b38a82e75652d26d61b40fb2ca5c7

See more details on using hashes here.

File details

Details for the file openvino-2024.1.0-15008-cp312-cp312-manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for openvino-2024.1.0-15008-cp312-cp312-manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 6d805b7d2c8758588cb14a0c97d06b8132bad3dd063487c8db74b7742ca43c76
MD5 ade78221c72020971427aac93fcd4d1e
BLAKE2b-256 8b7d3c2bca2c97384ffc2fc744d70e89e72dde3bf638d031b9348e9f3e9a4584

See more details on using hashes here.

File details

Details for the file openvino-2024.1.0-15008-cp311-cp311-win_amd64.whl.

File metadata

File hashes

Hashes for openvino-2024.1.0-15008-cp311-cp311-win_amd64.whl
Algorithm Hash digest
SHA256 949911be858c6d3e696ef6827aa08b2f88c5e1e7e6d3f7841249a8516ea7af99
MD5 66920bda2834c861c3bda5530fc5e224
BLAKE2b-256 1a40ae11198e2a1f035daa8518663b30aa76b61d488aeaf2378bc9dfbd0c4ef5

See more details on using hashes here.

File details

Details for the file openvino-2024.1.0-15008-cp311-cp311-manylinux_2_31_aarch64.whl.

File metadata

File hashes

Hashes for openvino-2024.1.0-15008-cp311-cp311-manylinux_2_31_aarch64.whl
Algorithm Hash digest
SHA256 d0e2f2d40c3e6550974a97fd7f9b854ff5278d4075228d0599556b0b0405eaf8
MD5 01e1695e47c003cbd92abfb9b6e4bb42
BLAKE2b-256 58162a6bad406333df613d0fdecd8cf4ba7dcfa6a66e7b48f2c245de124f6601

See more details on using hashes here.

File details

Details for the file openvino-2024.1.0-15008-cp311-cp311-manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for openvino-2024.1.0-15008-cp311-cp311-manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 dadca495b9c2bec3f09b8db0cfcc423c817b39a4544d43c4e398f6e312ca0ad2
MD5 d3e8506e0548ce9c7d2a867e63a765ef
BLAKE2b-256 3b6408420488ec1c859fea69adae85e7969aff1697dc72b2c98367362ac36d55

See more details on using hashes here.

File details

Details for the file openvino-2024.1.0-15008-cp311-cp311-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for openvino-2024.1.0-15008-cp311-cp311-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 98ddda3bd3f42e80af15edc091276133a7045264d41ce11013bc1b95e48a7ee5
MD5 b858ab58dec36b3fe7046dfdc1ffb2ef
BLAKE2b-256 df67742720041cabeaea107398ba8e8c3f7a95f7f1417beded3dc528d5c30857

See more details on using hashes here.

File details

Details for the file openvino-2024.1.0-15008-cp311-cp311-macosx_10_12_x86_64.whl.

File metadata

File hashes

Hashes for openvino-2024.1.0-15008-cp311-cp311-macosx_10_12_x86_64.whl
Algorithm Hash digest
SHA256 f57bb2fe5945f14cad55eeb2f732585d7052118cc6edb8c4b6e2172727ecdb04
MD5 95d99407b39cf848659a2d729e50646e
BLAKE2b-256 bc68eb6161dbc1c1ee19e9d7f87f1637d365bcf3f75ac55178eaf955b1c1a62e

See more details on using hashes here.

File details

Details for the file openvino-2024.1.0-15008-cp310-cp310-win_amd64.whl.

File metadata

File hashes

Hashes for openvino-2024.1.0-15008-cp310-cp310-win_amd64.whl
Algorithm Hash digest
SHA256 f21564c24fd2ac3583edeae00bfe3a3e808052548af41f1123547ec16c143bf6
MD5 81938f959b31e07cfa8f6b5852f9b9b0
BLAKE2b-256 a97378af4d8dd8262084a4c4aed1e691d9f43209a62b65fb49916d5d29a675e1

See more details on using hashes here.

File details

Details for the file openvino-2024.1.0-15008-cp310-cp310-manylinux_2_31_aarch64.whl.

File metadata

File hashes

Hashes for openvino-2024.1.0-15008-cp310-cp310-manylinux_2_31_aarch64.whl
Algorithm Hash digest
SHA256 311eab45aa91dd8d10a1a4c1c876b25f993a25be99b5a34a4080b2c2fc4b2d28
MD5 d0ae8c03ccf10cb49efdd92da8195e48
BLAKE2b-256 8a9bb81d8a1a50af649f353399f34d930449dac5bb95ae34130e3a279d31e45f

See more details on using hashes here.

File details

Details for the file openvino-2024.1.0-15008-cp310-cp310-manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for openvino-2024.1.0-15008-cp310-cp310-manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 3e447c9cbe74324b955e1c10d65eaad2256b340dc559b1ebecd11fcc2e9d505a
MD5 1089965e843179f04ac4daad56bd0ec9
BLAKE2b-256 c9dfcbf6e024c62033c29aa34830531844292f89d814850f3ca1a6ef1d7ab772

See more details on using hashes here.

File details

Details for the file openvino-2024.1.0-15008-cp310-cp310-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for openvino-2024.1.0-15008-cp310-cp310-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 83b7527f83ee009a694a5ba004289e891b3418ad1169c88560754bc7839d03aa
MD5 7dfd2158ad3a852106fdc5f089689d2b
BLAKE2b-256 5772ff445984b026e20d546926e1fbd2f0961837124807661ec156b799d65c36

See more details on using hashes here.

File details

Details for the file openvino-2024.1.0-15008-cp310-cp310-macosx_10_12_x86_64.whl.

File metadata

File hashes

Hashes for openvino-2024.1.0-15008-cp310-cp310-macosx_10_12_x86_64.whl
Algorithm Hash digest
SHA256 9e72adbc6a68e0e0906339342149c00bb90918530045595d7af1d86236a8b81a
MD5 dc657cad64fb3647beb864a53f444158
BLAKE2b-256 b3a31134231b7109a6a6ff91260377392908c30b65c876a680d9a38df6f23eba

See more details on using hashes here.

File details

Details for the file openvino-2024.1.0-15008-cp39-cp39-win_amd64.whl.

File metadata

File hashes

Hashes for openvino-2024.1.0-15008-cp39-cp39-win_amd64.whl
Algorithm Hash digest
SHA256 53bfcb2b46ced2fd52fbf4582ec1c7358c56c60fa80e75b9b851f124d6a4a6f8
MD5 9d51e88f9f113da680a88769f68a5139
BLAKE2b-256 e0a6a48038ebd8d9ebef475e285a6202559802e6378a156bcf8d8d8c419ac1e4

See more details on using hashes here.

File details

Details for the file openvino-2024.1.0-15008-cp39-cp39-manylinux_2_31_aarch64.whl.

File metadata

File hashes

Hashes for openvino-2024.1.0-15008-cp39-cp39-manylinux_2_31_aarch64.whl
Algorithm Hash digest
SHA256 24a947efa24a6a64d74b615c09406fd81c1e4f2d30de8fef94006aebd21dcaaa
MD5 3d25e7b6b449c3839049ec773209b988
BLAKE2b-256 c01a868773fd711bf3d6a719ce44db1edea8a7d7f85af823bf720e0150518b2b

See more details on using hashes here.

File details

Details for the file openvino-2024.1.0-15008-cp39-cp39-manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for openvino-2024.1.0-15008-cp39-cp39-manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 5cca8672d43b4b194e7bac147eb7333f4047093d08345463564833c7363b9ce2
MD5 c07e61baff70e4d806522ba3fcae6c8b
BLAKE2b-256 a92de279787dd65ae955ab63593b46e97fc93dc33a5185238d67c0da336112fe

See more details on using hashes here.

File details

Details for the file openvino-2024.1.0-15008-cp39-cp39-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for openvino-2024.1.0-15008-cp39-cp39-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 c4b96724d4cdee947b949abf38fc498781e6184b35edce0bf63a8cf49b524d53
MD5 96c65f771b0702287bbdf37948c4c493
BLAKE2b-256 73027098ef5998893cffd798a8005592de38216e98580a35e2253ed11ef2c7f1

See more details on using hashes here.

File details

Details for the file openvino-2024.1.0-15008-cp39-cp39-macosx_10_12_x86_64.whl.

File metadata

File hashes

Hashes for openvino-2024.1.0-15008-cp39-cp39-macosx_10_12_x86_64.whl
Algorithm Hash digest
SHA256 578f69a85bec3c487fd1cdb4022891420265d88b0236c95da1e788c202ab5b33
MD5 5bae128ef3f34fba23518cc596a3306a
BLAKE2b-256 830f78cdd1b10e3607dee9eed89ea2d291d7d70c937156ac4aac2212b1a5db99

See more details on using hashes here.

File details

Details for the file openvino-2024.1.0-15008-cp38-cp38-win_amd64.whl.

File metadata

File hashes

Hashes for openvino-2024.1.0-15008-cp38-cp38-win_amd64.whl
Algorithm Hash digest
SHA256 956875f4f545ec1e0e9d8489f6df92bcbaf6869b60341c20f2492a9a3a2b5291
MD5 c9a1a8add3557d40b1fd2e38bef9a0c8
BLAKE2b-256 484d09204a972c194ca47e2e66b1b6b5c7c79ca564358b0a34c673503512bf6a

See more details on using hashes here.

File details

Details for the file openvino-2024.1.0-15008-cp38-cp38-manylinux_2_31_aarch64.whl.

File metadata

File hashes

Hashes for openvino-2024.1.0-15008-cp38-cp38-manylinux_2_31_aarch64.whl
Algorithm Hash digest
SHA256 86d4de1686a23ce9fa5d7a40409831700b028add8fc29ec40e952caf8c2a1440
MD5 d803be5c2781d5304750d3272a03c9f5
BLAKE2b-256 7dfac54bbbb8d621d39cbd1ff2428060af83b9d605706b2493f57ff8a5f6edde

See more details on using hashes here.

File details

Details for the file openvino-2024.1.0-15008-cp38-cp38-manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for openvino-2024.1.0-15008-cp38-cp38-manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 72db34469075492aeae2657bfc8b4edd5e72fba8fac1ba0a63e1c5c54d596e4d
MD5 c31cf44b812bc341aa637aed4dce117b
BLAKE2b-256 484f602e4e015289f0d0ca6652f74a632dda63e8529eb43c5969b90c2341b087

See more details on using hashes here.

File details

Details for the file openvino-2024.1.0-15008-cp38-cp38-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for openvino-2024.1.0-15008-cp38-cp38-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 93fe4effec4621b7adddfa4019caa9b1f9247da6e67cca5ae11eb13359529047
MD5 0b64ce69bcddd6b16eb63737e101d115
BLAKE2b-256 5f6577d9744e277f4082c0ac02e2869433dd386b8a1049eaaada239e6dd72001

See more details on using hashes here.

File details

Details for the file openvino-2024.1.0-15008-cp38-cp38-macosx_10_12_x86_64.whl.

File metadata

File hashes

Hashes for openvino-2024.1.0-15008-cp38-cp38-macosx_10_12_x86_64.whl
Algorithm Hash digest
SHA256 bff047f905cbf90883de88c1188cf98bf172dd832adbc25f5d25a36d24adfb48
MD5 2794b5f8b95be1920e07b53264452ba0
BLAKE2b-256 e0de45779365556fb2adcacabd58c9b286477433eed6ffac4dfe5c853e4db3cc

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page