Skip to main content

OpenVINO(TM) Runtime

Project description

OpenVINO™

Intel® Distribution of OpenVINO™ toolkit is an open-source toolkit for optimizing and deploying AI inference. It can be used to develop applications and solutions based on deep learning tasks, such as: emulation of human vision, automatic speech recognition, natural language processing, recommendation systems, etc. It provides high-performance and rich deployment options, from edge to cloud.

If you have already finished developing your models and converting them to the OpenVINO model format, you can install OpenVINO Runtime to deploy your applications on various devices. The OpenVINO™ Python package includes a set of libraries for an easy inference integration with your products.

System Requirements

Before you start the installation, check the supported operating systems and required Python* versions. The complete list of supported hardware is available in the System Requirements.

C++ libraries are also required for the installation on Windows*. To install that, you can download the Visual Studio Redistributable file (.exe).

NOTE: This package can be installed on other versions of Linux and Windows OSes, but only the specific versions above are fully validated.

Install OpenVINO™

Step 1. Set Up Python Virtual Environment

Use a virtual environment to avoid dependency conflicts.

To create a virtual environment, use the following commands:

On Windows:

python -m venv openvino_env

On Linux and macOS:

python3 -m venv openvino_env

NOTE: On Linux and macOS, you may need to install pip. For example, on Ubuntu execute the following command to get pip installed: sudo apt install python3-venv python3-pip.

Step 2. Activate Virtual Environment

On Windows:

openvino_env\Scripts\activate

On Linux and macOS:

source openvino_env/bin/activate

Step 3. Set Up and Update PIP to the Highest Version

Run the command below:

python -m pip install --upgrade pip

Step 4. Install the Package

Run the command below:

pip install openvino

Step 5. Verify that the Package Is Installed

Run the command below:

python -c "from openvino import Core; print(Core().available_devices)"

If installation was successful, you will see the list of available devices.

What's in the Package

Component Content Description
OpenVINO Runtime openvino package OpenVINO Runtime is a set of C++ libraries with C and Python bindings providing a common API to deliver inference solutions on the platform of your choice. Use the OpenVINO Runtime API to read PyTorch*, TensorFlow*, TensorFlow Lite*, ONNX*, and PaddlePaddle* models and execute them on preferred devices. OpenVINO Runtime uses a plugin architecture and includes the following plugins: CPU, GPU, Auto Batch, Auto, Hetero.
OpenVINO Model Converter (OVC) ovc OpenVINO Model Converter converts models that were trained in popular frameworks to a format usable by OpenVINO components.
Supported frameworks include ONNX*, TensorFlow*, TensorFlow Lite*, and PaddlePaddle*.
Benchmark Tool benchmark_app Benchmark Application allows you to estimate deep learning inference performance on supported devices for synchronous and asynchronous modes.

Troubleshooting

For general troubleshooting steps and issues, see Troubleshooting Guide for OpenVINO Installation. The following sections also provide explanations to several error messages.

Errors with Installing via PIP for Users in China

Users in China might encounter errors while downloading sources via PIP during OpenVINO™ installation. To resolve the issues, try the following solution:

  • Add the download source using the -i parameter with the Python pip command. For example:

    pip install openvino -i https://mirrors.aliyun.com/pypi/simple/
    

    Use the --trusted-host parameter if the URL above is http instead of https.

ERROR:root:Could not find OpenVINO Python API.

On Windows*, some libraries are necessary to run OpenVINO. To resolve this issue, install the C++ redistributable (.exe). You can also view a full download list on the official support page.

ImportError: libpython3.8.so.1.0: cannot open shared object file: No such file or directory

To resolve missing external dependency on Ubuntu*, execute the following command:

sudo apt-get install libpython3.8

Additional Resources

Copyright © 2018-2024 Intel Corporation

LEGAL NOTICE: Your use of this software and any required dependent software (the “Software Package”) is subject to the terms and conditions of the Apache 2.0 License for the Software Package, which may also include notices, disclaimers, or license terms for third party or open source software included in or with the Software Package, and your use indicates your acceptance of all such terms. Please refer to the “third-party-programs.txt” or other similarly-named text file included with the Software Package for additional details.

Intel is committed to the respect of human rights and avoiding complicity in human rights abuses, a policy reflected in the Intel Global Human Rights Principles. Accordingly, by accessing the Intel material on this platform you agree that you will not use the material in a product or application that causes or contributes to a violation of an internationally recognized human right.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distributions

No source distribution files available for this release.See tutorial on generating distribution archives.

Built Distributions

openvino-2024.2.0-15519-cp312-cp312-win_amd64.whl (32.4 MB view details)

Uploaded CPython 3.12 Windows x86-64

openvino-2024.2.0-15519-cp312-cp312-manylinux_2_31_aarch64.whl (21.7 MB view details)

Uploaded CPython 3.12 manylinux: glibc 2.31+ ARM64

openvino-2024.2.0-15519-cp311-cp311-win_amd64.whl (32.4 MB view details)

Uploaded CPython 3.11 Windows x86-64

openvino-2024.2.0-15519-cp311-cp311-manylinux_2_31_aarch64.whl (21.7 MB view details)

Uploaded CPython 3.11 manylinux: glibc 2.31+ ARM64

openvino-2024.2.0-15519-cp311-cp311-macosx_11_0_arm64.whl (25.3 MB view details)

Uploaded CPython 3.11 macOS 11.0+ ARM64

openvino-2024.2.0-15519-cp311-cp311-macosx_10_15_x86_64.whl (34.2 MB view details)

Uploaded CPython 3.11 macOS 10.15+ x86-64

openvino-2024.2.0-15519-cp310-cp310-win_amd64.whl (32.4 MB view details)

Uploaded CPython 3.10 Windows x86-64

openvino-2024.2.0-15519-cp310-cp310-manylinux_2_31_aarch64.whl (21.7 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.31+ ARM64

openvino-2024.2.0-15519-cp310-cp310-macosx_11_0_arm64.whl (25.3 MB view details)

Uploaded CPython 3.10 macOS 11.0+ ARM64

openvino-2024.2.0-15519-cp310-cp310-macosx_10_15_x86_64.whl (34.2 MB view details)

Uploaded CPython 3.10 macOS 10.15+ x86-64

openvino-2024.2.0-15519-cp39-cp39-win_amd64.whl (32.4 MB view details)

Uploaded CPython 3.9 Windows x86-64

openvino-2024.2.0-15519-cp39-cp39-manylinux_2_31_aarch64.whl (21.7 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.31+ ARM64

openvino-2024.2.0-15519-cp39-cp39-macosx_11_0_arm64.whl (25.3 MB view details)

Uploaded CPython 3.9 macOS 11.0+ ARM64

openvino-2024.2.0-15519-cp39-cp39-macosx_10_15_x86_64.whl (34.2 MB view details)

Uploaded CPython 3.9 macOS 10.15+ x86-64

openvino-2024.2.0-15519-cp38-cp38-win_amd64.whl (32.4 MB view details)

Uploaded CPython 3.8 Windows x86-64

openvino-2024.2.0-15519-cp38-cp38-manylinux_2_31_aarch64.whl (21.7 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.31+ ARM64

openvino-2024.2.0-15519-cp38-cp38-macosx_11_0_arm64.whl (25.3 MB view details)

Uploaded CPython 3.8 macOS 11.0+ ARM64

openvino-2024.2.0-15519-cp38-cp38-macosx_10_15_x86_64.whl (34.2 MB view details)

Uploaded CPython 3.8 macOS 10.15+ x86-64

File details

Details for the file openvino-2024.2.0-15519-cp312-cp312-win_amd64.whl.

File metadata

File hashes

Hashes for openvino-2024.2.0-15519-cp312-cp312-win_amd64.whl
Algorithm Hash digest
SHA256 cc240163bf6d1ebcad5fcd40d0ae803d7eae84c6a9319d0d314269270cd0ba12
MD5 f0f346086b54b0e6130fee84305e37d5
BLAKE2b-256 75586b0a0116abdbd86730562af0e1db0dff4711eb8342f476bba09c7aced085

See more details on using hashes here.

File details

Details for the file openvino-2024.2.0-15519-cp312-cp312-manylinux_2_31_aarch64.whl.

File metadata

File hashes

Hashes for openvino-2024.2.0-15519-cp312-cp312-manylinux_2_31_aarch64.whl
Algorithm Hash digest
SHA256 c7a46791f60ae8646e89b0983a4cfd6481980359b92239bceff643f6840c41d9
MD5 ef1233974b5e33f6ce0f19ea2cdcd1ac
BLAKE2b-256 78988ba9adf1d64f22e1182f2a41f6a339b118f882fe5540adcdbb5773dfb570

See more details on using hashes here.

File details

Details for the file openvino-2024.2.0-15519-cp312-cp312-manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for openvino-2024.2.0-15519-cp312-cp312-manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 82930c629962483e55d9a7fc14a3b97d3d512eefbe69d85a63dfe5711c6b5208
MD5 efa065dfb4f7ad148cdd0d21d678b3c2
BLAKE2b-256 dc5d5faf282ca4329b8ea934a590d79407d0dcdf34386a174e066e2b7920e25c

See more details on using hashes here.

File details

Details for the file openvino-2024.2.0-15519-cp311-cp311-win_amd64.whl.

File metadata

File hashes

Hashes for openvino-2024.2.0-15519-cp311-cp311-win_amd64.whl
Algorithm Hash digest
SHA256 2bd9342233784501ca251d277c5ca83423ffa44f5ac541a15749d07554d729cf
MD5 d8b77d14fe0fdbe1cc3f837f842da7e5
BLAKE2b-256 d0024d8c0753a8f8bf89d1a697b73130c6336fd5ee3a73b1c0b19c1174f1d727

See more details on using hashes here.

File details

Details for the file openvino-2024.2.0-15519-cp311-cp311-manylinux_2_31_aarch64.whl.

File metadata

File hashes

Hashes for openvino-2024.2.0-15519-cp311-cp311-manylinux_2_31_aarch64.whl
Algorithm Hash digest
SHA256 ac7be14493c2e26835ea468c794099943ddca751ce889e100fc8796931c463c6
MD5 64b9c4bda4696846a8fc2b406d00b67b
BLAKE2b-256 2ff946655700ea0548a2a65d7dd7cf21e9e907295c62f3696b9369781b7bc587

See more details on using hashes here.

File details

Details for the file openvino-2024.2.0-15519-cp311-cp311-manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for openvino-2024.2.0-15519-cp311-cp311-manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 f31dfd3d793a787a799930568e9e1dc736bb3a7069b266f2d80b2ad623c29d84
MD5 606fad5b581130586ca33024f76141bb
BLAKE2b-256 c71f3990dd151eaea0eb6f1f70e51be675ad3bd4fadac1868b5fa4458da6e455

See more details on using hashes here.

File details

Details for the file openvino-2024.2.0-15519-cp311-cp311-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for openvino-2024.2.0-15519-cp311-cp311-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 9abe228437454e0a7e84105d2871d850e3b3f90696591268e7a789a2c9b03108
MD5 154132044beea4aa9801d6282cabcd6f
BLAKE2b-256 ee1bd44bf904fbcc12201335d7295b72c4121b0dcdbef114800c10469d072413

See more details on using hashes here.

File details

Details for the file openvino-2024.2.0-15519-cp311-cp311-macosx_10_15_x86_64.whl.

File metadata

File hashes

Hashes for openvino-2024.2.0-15519-cp311-cp311-macosx_10_15_x86_64.whl
Algorithm Hash digest
SHA256 0abb0fde98bbd05e46f271621fb067782545b590a01dfd1f56f09f87c0d3a380
MD5 329facf289662657100ca5e3f1db3603
BLAKE2b-256 18cb8916f76bdb21c9dfca938fcb846cf72f6fbb90990179d63fd45e982e7a97

See more details on using hashes here.

File details

Details for the file openvino-2024.2.0-15519-cp310-cp310-win_amd64.whl.

File metadata

File hashes

Hashes for openvino-2024.2.0-15519-cp310-cp310-win_amd64.whl
Algorithm Hash digest
SHA256 7ef8fdec58f4001593365777fcb9485d67be231269b73b65d86619b4f20195ba
MD5 8c410efd32df08b28663c6908c6732cf
BLAKE2b-256 414c6ecc7ebee26c0bce6f1fd4769de2662cfbecb7ed9c70d5f769e3f30648f4

See more details on using hashes here.

File details

Details for the file openvino-2024.2.0-15519-cp310-cp310-manylinux_2_31_aarch64.whl.

File metadata

File hashes

Hashes for openvino-2024.2.0-15519-cp310-cp310-manylinux_2_31_aarch64.whl
Algorithm Hash digest
SHA256 7dac3050ef5c37323070777d4061fa97e59f32aad3a8067ba75fa4b4961d1316
MD5 06ae0679c48a9e0803c5f5a66c4055d3
BLAKE2b-256 99372ddcae60add9ab1e44816c434059d78fa49dae086bad84d7648d05c473c8

See more details on using hashes here.

File details

Details for the file openvino-2024.2.0-15519-cp310-cp310-manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for openvino-2024.2.0-15519-cp310-cp310-manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 c7f75d54f048df4389824fe25caff71daa32b9242cac352056cd6bacb791d2ed
MD5 0812f2186724b041b661700bfdac66d6
BLAKE2b-256 2be3735e7d8a141c659e425d2f4cfd0625e11361d30d8360251f362af6f495dc

See more details on using hashes here.

File details

Details for the file openvino-2024.2.0-15519-cp310-cp310-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for openvino-2024.2.0-15519-cp310-cp310-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 c1070b503729bd9107ade06614ab8f55c8d08d80e456d5f08898d7280a1daf60
MD5 6a4bfe6ac33b2f4b49c54d433c475320
BLAKE2b-256 1dca7bd9f2a547ddc10508bc12f4e95780cfb4042a285a5bafe67e0358df6205

See more details on using hashes here.

File details

Details for the file openvino-2024.2.0-15519-cp310-cp310-macosx_10_15_x86_64.whl.

File metadata

File hashes

Hashes for openvino-2024.2.0-15519-cp310-cp310-macosx_10_15_x86_64.whl
Algorithm Hash digest
SHA256 b9008deb639c158534f8dd931861debe451d28026640d1f326bf27c5d2d23997
MD5 7d8b4a7c81ab82b5352d477c5120cbe1
BLAKE2b-256 f0dd6d3c1409447f20509d2f23f0fcc52fd2eb542c9902325fb3f3bdbae0601d

See more details on using hashes here.

File details

Details for the file openvino-2024.2.0-15519-cp39-cp39-win_amd64.whl.

File metadata

File hashes

Hashes for openvino-2024.2.0-15519-cp39-cp39-win_amd64.whl
Algorithm Hash digest
SHA256 bc62d99304ec879fac7eec2700cd068ef3b9eb99b718831924723b60707316e6
MD5 27cdf8917f2deaafd40451a1674d990d
BLAKE2b-256 7b9c5eb0909d2d1288d8829afc919ef580c19989b18cbad545ba4b92dbcede07

See more details on using hashes here.

File details

Details for the file openvino-2024.2.0-15519-cp39-cp39-manylinux_2_31_aarch64.whl.

File metadata

File hashes

Hashes for openvino-2024.2.0-15519-cp39-cp39-manylinux_2_31_aarch64.whl
Algorithm Hash digest
SHA256 c8d661058de1249e4bd188ac2ad522ae27b5b01f9831b76dd864b91f002972c7
MD5 beccf2d2c446fe8edfe855ab52be2720
BLAKE2b-256 2634d13f3ec4f14ae798e34d25609aa45d9b7a750ac1c11040c3fc04d6f24547

See more details on using hashes here.

File details

Details for the file openvino-2024.2.0-15519-cp39-cp39-manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for openvino-2024.2.0-15519-cp39-cp39-manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 db30ba9e8af7188436ff76ce79ad7a8a2a5204e3c4757d2728223270b6a73080
MD5 fa2e95dd20fff055cc866036e8c38446
BLAKE2b-256 00c6f99c86d8ce9b8d20d95f2f89e73a5f931a337765ae98992aab5050a1dd3e

See more details on using hashes here.

File details

Details for the file openvino-2024.2.0-15519-cp39-cp39-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for openvino-2024.2.0-15519-cp39-cp39-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 cb064a8451ea9a9e126b8184e2ac17e53c0e718cd12e2b2437a5f7ee0787455b
MD5 169b634dd2a6b25e03d50c752b0aa084
BLAKE2b-256 8450a607a6ce829ea3067111a86b3b8852d7afca87f119a588ba15c5718e80c2

See more details on using hashes here.

File details

Details for the file openvino-2024.2.0-15519-cp39-cp39-macosx_10_15_x86_64.whl.

File metadata

File hashes

Hashes for openvino-2024.2.0-15519-cp39-cp39-macosx_10_15_x86_64.whl
Algorithm Hash digest
SHA256 61c878b7b66e16a72e6ad226484f06b6eebc4ab9a8fc526a75157b42afb0204a
MD5 d20d67b791c2a5d146725cf7da81510e
BLAKE2b-256 045c19223c1de42d339be668a74aed064d916979956d18b02d3c4dda3601341c

See more details on using hashes here.

File details

Details for the file openvino-2024.2.0-15519-cp38-cp38-win_amd64.whl.

File metadata

File hashes

Hashes for openvino-2024.2.0-15519-cp38-cp38-win_amd64.whl
Algorithm Hash digest
SHA256 3fa938d3c10a8769325ac8e7e9627e5d95f49feefec2487014c8cd86aa50a0b3
MD5 7b194b4f648db6747daf2ff1d2ab4b6d
BLAKE2b-256 e53f60ffff0a02d7f436fac7aea5646bf35a1150a4435a33b79958f37941515d

See more details on using hashes here.

File details

Details for the file openvino-2024.2.0-15519-cp38-cp38-manylinux_2_31_aarch64.whl.

File metadata

File hashes

Hashes for openvino-2024.2.0-15519-cp38-cp38-manylinux_2_31_aarch64.whl
Algorithm Hash digest
SHA256 1816965c487666ce9a349e9c8ca7cc72c73a7cdf5b019d054d18aeab17b117b7
MD5 df7476218b489cc0347a5b00363451b7
BLAKE2b-256 22bc4bdc121de8bf65db392f18e4082d002fec6d089323822705565da759c6b1

See more details on using hashes here.

File details

Details for the file openvino-2024.2.0-15519-cp38-cp38-manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for openvino-2024.2.0-15519-cp38-cp38-manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 49726db2048e54d0e19a2f4bc95ab755c6e50a820248dd5c3ee1399a93c0acdc
MD5 adc62bcbd72c6445c6bb166854d69223
BLAKE2b-256 752f601f9ed9d4addef217cb0f20b6f777780bf4962c8976d223c73a7d917930

See more details on using hashes here.

File details

Details for the file openvino-2024.2.0-15519-cp38-cp38-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for openvino-2024.2.0-15519-cp38-cp38-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 b17c1f67782605a2b1e521d92c72f1b4f3c82643a96e004606ff1a9c6d76c4b9
MD5 09bf93fbaddb3d19548e31d716284d69
BLAKE2b-256 1e452afbad477f4dec1bb19874ee1412e80bec3e014b705ef3d614d5ee262e67

See more details on using hashes here.

File details

Details for the file openvino-2024.2.0-15519-cp38-cp38-macosx_10_15_x86_64.whl.

File metadata

File hashes

Hashes for openvino-2024.2.0-15519-cp38-cp38-macosx_10_15_x86_64.whl
Algorithm Hash digest
SHA256 e941dfe7196b3a75364fcee4e0fe79cee63fa9d4e2a1852fb459048d7daa83f5
MD5 e3cae80c50d1bbeaf9d9cff744b2e308
BLAKE2b-256 5354714cb20c40fce33f80167f37d491b1ab3c0e3266343e31e092b65729abb3

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page