Skip to main content

OpenVINO(TM) Runtime

Project description

OpenVINO™

Intel® Distribution of OpenVINO™ toolkit is an open-source toolkit for optimizing and deploying AI inference. It can be used to develop applications and solutions based on deep learning tasks, such as: emulation of human vision, automatic speech recognition, natural language processing, recommendation systems, etc. It provides high-performance and rich deployment options, from edge to cloud.

If you have already finished developing your models and converting them to the OpenVINO model format, you can install OpenVINO Runtime to deploy your applications on various devices. The OpenVINO™ Python package includes a set of libraries for an easy inference integration with your products.

System Requirements

Before you start the installation, check the supported operating systems and required Python* versions. The complete list of supported hardware is available in the System Requirements.

C++ libraries are also required for the installation on Windows*. To install that, you can download the Visual Studio Redistributable file (.exe).

NOTE: This package can be installed on other versions of Linux and Windows OSes, but only the specific versions above are fully validated.

Install OpenVINO™

Step 1. Set Up Python Virtual Environment

Use a virtual environment to avoid dependency conflicts.

To create a virtual environment, use the following commands:

On Windows:

python -m venv openvino_env

On Linux and macOS:

python3 -m venv openvino_env

NOTE: On Linux and macOS, you may need to install pip. For example, on Ubuntu execute the following command to get pip installed: sudo apt install python3-venv python3-pip.

Step 2. Activate Virtual Environment

On Windows:

openvino_env\Scripts\activate

On Linux and macOS:

source openvino_env/bin/activate

Step 3. Set Up and Update PIP to the Highest Version

Run the command below:

python -m pip install --upgrade pip

Step 4. Install the Package

Run the command below:

pip install openvino

Step 5. Verify that the Package Is Installed

Run the command below:

python -c "from openvino import Core; print(Core().available_devices)"

If installation was successful, you will see the list of available devices.

What's in the Package

Component Content Description
OpenVINO Runtime openvino package OpenVINO Runtime is a set of C++ libraries with C and Python bindings providing a common API to deliver inference solutions on the platform of your choice. Use the OpenVINO Runtime API to read PyTorch*, TensorFlow*, TensorFlow Lite*, ONNX*, and PaddlePaddle* models and execute them on preferred devices. OpenVINO Runtime uses a plugin architecture and includes the following plugins: CPU, GPU, Auto Batch, Auto, Hetero.
OpenVINO Model Converter (OVC) ovc OpenVINO Model Converter converts models that were trained in popular frameworks to a format usable by OpenVINO components.
Supported frameworks include ONNX*, TensorFlow*, TensorFlow Lite*, and PaddlePaddle*.
Benchmark Tool benchmark_app Benchmark Application allows you to estimate deep learning inference performance on supported devices for synchronous and asynchronous modes.

Troubleshooting

For general troubleshooting steps and issues, see Troubleshooting Guide for OpenVINO Installation. The following sections also provide explanations to several error messages.

Errors with Installing via PIP for Users in China

Users in China might encounter errors while downloading sources via PIP during OpenVINO™ installation. To resolve the issues, try the following solution:

  • Add the download source using the -i parameter with the Python pip command. For example:

    pip install openvino -i https://mirrors.aliyun.com/pypi/simple/
    

    Use the --trusted-host parameter if the URL above is http instead of https.

ERROR:root:Could not find OpenVINO Python API.

On Windows*, some libraries are necessary to run OpenVINO. To resolve this issue, install the C++ redistributable (.exe). You can also view a full download list on the official support page.

ImportError: libpython3.8.so.1.0: cannot open shared object file: No such file or directory

To resolve missing external dependency on Ubuntu*, execute the following command:

sudo apt-get install libpython3.8

Additional Resources

Copyright © 2018-2024 Intel Corporation

LEGAL NOTICE: Your use of this software and any required dependent software (the “Software Package”) is subject to the terms and conditions of the Apache 2.0 License for the Software Package, which may also include notices, disclaimers, or license terms for third party or open source software included in or with the Software Package, and your use indicates your acceptance of all such terms. Please refer to the “third-party-programs.txt” or other similarly-named text file included with the Software Package for additional details.

Intel is committed to the respect of human rights and avoiding complicity in human rights abuses, a policy reflected in the Intel Global Human Rights Principles. Accordingly, by accessing the Intel material on this platform you agree that you will not use the material in a product or application that causes or contributes to a violation of an internationally recognized human right.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distributions

No source distribution files available for this release.See tutorial on generating distribution archives.

Built Distributions

openvino-2024.3.0-16041-cp312-cp312-win_amd64.whl (34.0 MB view details)

Uploaded CPython 3.12 Windows x86-64

openvino-2024.3.0-16041-cp312-cp312-manylinux_2_31_aarch64.whl (22.9 MB view details)

Uploaded CPython 3.12 manylinux: glibc 2.31+ ARM64

openvino-2024.3.0-16041-cp311-cp311-win_amd64.whl (34.0 MB view details)

Uploaded CPython 3.11 Windows x86-64

openvino-2024.3.0-16041-cp311-cp311-manylinux_2_31_aarch64.whl (22.9 MB view details)

Uploaded CPython 3.11 manylinux: glibc 2.31+ ARM64

openvino-2024.3.0-16041-cp311-cp311-macosx_11_0_arm64.whl (26.6 MB view details)

Uploaded CPython 3.11 macOS 11.0+ ARM64

openvino-2024.3.0-16041-cp311-cp311-macosx_10_15_x86_64.whl (35.1 MB view details)

Uploaded CPython 3.11 macOS 10.15+ x86-64

openvino-2024.3.0-16041-cp310-cp310-win_amd64.whl (34.0 MB view details)

Uploaded CPython 3.10 Windows x86-64

openvino-2024.3.0-16041-cp310-cp310-manylinux_2_31_aarch64.whl (22.9 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.31+ ARM64

openvino-2024.3.0-16041-cp310-cp310-macosx_11_0_arm64.whl (26.6 MB view details)

Uploaded CPython 3.10 macOS 11.0+ ARM64

openvino-2024.3.0-16041-cp310-cp310-macosx_10_15_x86_64.whl (35.1 MB view details)

Uploaded CPython 3.10 macOS 10.15+ x86-64

openvino-2024.3.0-16041-cp39-cp39-win_amd64.whl (34.0 MB view details)

Uploaded CPython 3.9 Windows x86-64

openvino-2024.3.0-16041-cp39-cp39-manylinux_2_31_aarch64.whl (22.9 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.31+ ARM64

openvino-2024.3.0-16041-cp39-cp39-macosx_11_0_arm64.whl (26.6 MB view details)

Uploaded CPython 3.9 macOS 11.0+ ARM64

openvino-2024.3.0-16041-cp39-cp39-macosx_10_15_x86_64.whl (35.1 MB view details)

Uploaded CPython 3.9 macOS 10.15+ x86-64

openvino-2024.3.0-16041-cp38-cp38-win_amd64.whl (34.0 MB view details)

Uploaded CPython 3.8 Windows x86-64

openvino-2024.3.0-16041-cp38-cp38-manylinux_2_31_aarch64.whl (22.9 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.31+ ARM64

openvino-2024.3.0-16041-cp38-cp38-macosx_11_0_arm64.whl (26.6 MB view details)

Uploaded CPython 3.8 macOS 11.0+ ARM64

openvino-2024.3.0-16041-cp38-cp38-macosx_10_15_x86_64.whl (35.1 MB view details)

Uploaded CPython 3.8 macOS 10.15+ x86-64

File details

Details for the file openvino-2024.3.0-16041-cp312-cp312-win_amd64.whl.

File metadata

File hashes

Hashes for openvino-2024.3.0-16041-cp312-cp312-win_amd64.whl
Algorithm Hash digest
SHA256 80c9f7382eb9fbca589ba0c9cddcff67c814b56a8a4f04205db9761b7ce7c2e9
MD5 08701b78bd7c9632d421d57017a93f68
BLAKE2b-256 8e12ef891c3e5f0cacc24b0ffad16da5ecc8a1edda16592eb3b7310e95e63813

See more details on using hashes here.

File details

Details for the file openvino-2024.3.0-16041-cp312-cp312-manylinux_2_31_aarch64.whl.

File metadata

File hashes

Hashes for openvino-2024.3.0-16041-cp312-cp312-manylinux_2_31_aarch64.whl
Algorithm Hash digest
SHA256 0b95754cf1f03d8718b6a4eac4bcd0b3aeb1d0e2d1107b3ba394cc676be62c0b
MD5 c04e8a397bb7d53845d3b619b6b1dacb
BLAKE2b-256 a30e89364959b05223f85a029870537954d00fb74293bfa4ec195271827f9626

See more details on using hashes here.

File details

Details for the file openvino-2024.3.0-16041-cp312-cp312-manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for openvino-2024.3.0-16041-cp312-cp312-manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 002f39c4146409357bf4f13d8dcf3bbb85cb4d841cf4d5b18a23208cddd940ec
MD5 49c57c0c69185facb7ceee6400a55897
BLAKE2b-256 a104f27f3dbf2d390d6f7c921b65cf537e50ff65f1cc3911b9438d28e4959173

See more details on using hashes here.

File details

Details for the file openvino-2024.3.0-16041-cp311-cp311-win_amd64.whl.

File metadata

File hashes

Hashes for openvino-2024.3.0-16041-cp311-cp311-win_amd64.whl
Algorithm Hash digest
SHA256 5e6597f8e8785e711ea5ba7021394e87ef14a7ce59138f15503e5d99550b4434
MD5 0419060ed884e8f335b38430094d360f
BLAKE2b-256 81716d61de518c57d17a440c129f6849f8e1e3813a61f08696e8e31ef934588e

See more details on using hashes here.

File details

Details for the file openvino-2024.3.0-16041-cp311-cp311-manylinux_2_31_aarch64.whl.

File metadata

File hashes

Hashes for openvino-2024.3.0-16041-cp311-cp311-manylinux_2_31_aarch64.whl
Algorithm Hash digest
SHA256 8dc512ba540c8273c633e6d88c7765cd6254caf6f8311413328755be4d5742f5
MD5 3c33d9343d4d0ee18d3fca5c3da45f75
BLAKE2b-256 b8b30410b68efd8f6dae80fc01ae9ca4a0c1a3321adc21819bc042264451da3b

See more details on using hashes here.

File details

Details for the file openvino-2024.3.0-16041-cp311-cp311-manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for openvino-2024.3.0-16041-cp311-cp311-manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 eeb8cd2dde4b64a463d11be690fc3d4b5bc29d5eb0bcfb7e41707a23c317c8c9
MD5 3ee16e43308dadfc9ec79b2260f90f69
BLAKE2b-256 376645ce8b0acb395e697ee6e6433609bc9de315f8cb4bd1b9b93cf4e7f59248

See more details on using hashes here.

File details

Details for the file openvino-2024.3.0-16041-cp311-cp311-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for openvino-2024.3.0-16041-cp311-cp311-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 1c2cde8580171bb3c3dd9abf9f450b17289a8e16732694b7454180e7adebd176
MD5 e260c49d46c9c0072d327a818f3d45f5
BLAKE2b-256 a72bd4b8aefa429c414943bec1f42554bf8c2b2db59c099077e0816f9fc7106e

See more details on using hashes here.

File details

Details for the file openvino-2024.3.0-16041-cp311-cp311-macosx_10_15_x86_64.whl.

File metadata

File hashes

Hashes for openvino-2024.3.0-16041-cp311-cp311-macosx_10_15_x86_64.whl
Algorithm Hash digest
SHA256 6a14750ad108b1f1be1e0741b7694b437ba03c1522b8685d90bdfa2a6ce1d078
MD5 2fae7a59ed03212e32315c901fd7c44d
BLAKE2b-256 aa19f0a45eb216581d64a9af51fae77b20c61721adb163d549f5f3bac588b768

See more details on using hashes here.

File details

Details for the file openvino-2024.3.0-16041-cp310-cp310-win_amd64.whl.

File metadata

File hashes

Hashes for openvino-2024.3.0-16041-cp310-cp310-win_amd64.whl
Algorithm Hash digest
SHA256 931ecffcfa7783e272c88f4bf94b6af0e3356e7dd6b3eb1c20263ebb0a75b743
MD5 252b29e70e9ba4e31c5d6435f5e809b7
BLAKE2b-256 a8b431329c052e0d38a636f5ec026da0bd14d34d120ce4091b43d5429fba9ea1

See more details on using hashes here.

File details

Details for the file openvino-2024.3.0-16041-cp310-cp310-manylinux_2_31_aarch64.whl.

File metadata

File hashes

Hashes for openvino-2024.3.0-16041-cp310-cp310-manylinux_2_31_aarch64.whl
Algorithm Hash digest
SHA256 fdfc3aa8a41ea00621e05843629413dd40b74eab1999a194a2a099f67c39f55a
MD5 63cf963149ebfb5e9292482649e66026
BLAKE2b-256 5f71e1cf98a46e104c37716bcdadd57cd171e9e249ccdf0683095b4a3af84a21

See more details on using hashes here.

File details

Details for the file openvino-2024.3.0-16041-cp310-cp310-manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for openvino-2024.3.0-16041-cp310-cp310-manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 17577a25f21ec3d5eba6f479b66a3bba34eaae40fa7ca922acc931ed3652c302
MD5 d00e932bc58e465686e857acaf9a8a4f
BLAKE2b-256 50a1172f3b83e24ecc070e9e6e8b5ddd355ec719e46e379e3aeeb62ca50c91cc

See more details on using hashes here.

File details

Details for the file openvino-2024.3.0-16041-cp310-cp310-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for openvino-2024.3.0-16041-cp310-cp310-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 2f79d81ead402751fdd6ef6476254d4189350e3ede9dbe0d68bcbe95f4fe3994
MD5 762d79d64fe6efc0beb75ba9069dc136
BLAKE2b-256 789b171c674c578c97c876d8bfbe16fb67cb0f58aa535558cf29e3d92b3834ae

See more details on using hashes here.

File details

Details for the file openvino-2024.3.0-16041-cp310-cp310-macosx_10_15_x86_64.whl.

File metadata

File hashes

Hashes for openvino-2024.3.0-16041-cp310-cp310-macosx_10_15_x86_64.whl
Algorithm Hash digest
SHA256 c860d23fa6c09de643707a9beb9376f08e888b9ae31662a44f5b536ce085666a
MD5 9eef967ef0a79e0c5283e9d44ee2d0e7
BLAKE2b-256 14d7c8241fda94940af3e3174071e90693cf9d82e61531d64698cec90808eb65

See more details on using hashes here.

File details

Details for the file openvino-2024.3.0-16041-cp39-cp39-win_amd64.whl.

File metadata

File hashes

Hashes for openvino-2024.3.0-16041-cp39-cp39-win_amd64.whl
Algorithm Hash digest
SHA256 ed4987530db7dba6adc0f2a1dd73433cbcc42f2688a06d85579bf203cda57b34
MD5 24157825d1e14daa5b30c52f9cce3744
BLAKE2b-256 8e4aef37af5fea7d847ea08e51400de90a53c375e029d975c04c9db765b977db

See more details on using hashes here.

File details

Details for the file openvino-2024.3.0-16041-cp39-cp39-manylinux_2_31_aarch64.whl.

File metadata

File hashes

Hashes for openvino-2024.3.0-16041-cp39-cp39-manylinux_2_31_aarch64.whl
Algorithm Hash digest
SHA256 0352b1e385cefb9dcc74baaa7b0f754a309a960344a1d39e5dec6ba8cb3eee3e
MD5 5d3015dbf0fd22a2c191714a02199127
BLAKE2b-256 7dbf28e1b05f58ca6aba69f85645ddaf1c1707d162fb73c6290c0f26281884b0

See more details on using hashes here.

File details

Details for the file openvino-2024.3.0-16041-cp39-cp39-manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for openvino-2024.3.0-16041-cp39-cp39-manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 83023fa124b6da51a409d5b1d6950e4f4c4bf4b4e2925138bda8595f83b5cd4f
MD5 17deb240afb1c65081eb37659abdf334
BLAKE2b-256 59e27be917906c781c45c3f2dfa349d8fab63fe9b11aac51f10223c850530661

See more details on using hashes here.

File details

Details for the file openvino-2024.3.0-16041-cp39-cp39-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for openvino-2024.3.0-16041-cp39-cp39-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 9cf500c5690c220dc0b30cb0fd009199356eb5b082fed4504ca2583676cf2d40
MD5 eb67821b06033d0fec8cf07a4f3b8d23
BLAKE2b-256 def0373a12c8c6987cf31d46e9b1150ba6628a5549d95b32035393834d314c36

See more details on using hashes here.

File details

Details for the file openvino-2024.3.0-16041-cp39-cp39-macosx_10_15_x86_64.whl.

File metadata

File hashes

Hashes for openvino-2024.3.0-16041-cp39-cp39-macosx_10_15_x86_64.whl
Algorithm Hash digest
SHA256 a1eb7fa6926253604577d010b00b841d7b9a77f526ffb3421fe9c4796783ede8
MD5 610eefd5c204907985c854db3fae11cc
BLAKE2b-256 e14dacc88f9c602f2974f671202496d18897aeb05fa12f1b17b0bf9554720b20

See more details on using hashes here.

File details

Details for the file openvino-2024.3.0-16041-cp38-cp38-win_amd64.whl.

File metadata

File hashes

Hashes for openvino-2024.3.0-16041-cp38-cp38-win_amd64.whl
Algorithm Hash digest
SHA256 03c26812fe7f31286ec40a6f1352fd5495d10b33e37dc19f86e24f2c4478658a
MD5 f480a6180295b749caa716a48b610c32
BLAKE2b-256 4dc7f0c651d46e06ec837a5b18e8445aaaf49011c468efde4b822e506a3ef3cd

See more details on using hashes here.

File details

Details for the file openvino-2024.3.0-16041-cp38-cp38-manylinux_2_31_aarch64.whl.

File metadata

File hashes

Hashes for openvino-2024.3.0-16041-cp38-cp38-manylinux_2_31_aarch64.whl
Algorithm Hash digest
SHA256 9cc8b641684b0e7faddbe5df8136320c10e201e2a0d5b3188f4cd4c17ff8b14e
MD5 fc19e15e179b08c25202028a40c2ac38
BLAKE2b-256 75f812d7eb67219443ddb606eb8c3e4d5396bfef0d7f80f8c56c31a4dda1be0a

See more details on using hashes here.

File details

Details for the file openvino-2024.3.0-16041-cp38-cp38-manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for openvino-2024.3.0-16041-cp38-cp38-manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 f47c6c5631006d82c9f207f35854b65c88bd3dfc8009e93f257a0dcf1c91b6e0
MD5 cdd76c5017fdee4f001d0e21f5049722
BLAKE2b-256 3620db6fdc47780b528ae4321a25f2617667b199cd4582d84c4f037849bcc90b

See more details on using hashes here.

File details

Details for the file openvino-2024.3.0-16041-cp38-cp38-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for openvino-2024.3.0-16041-cp38-cp38-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 635d9b4a9663fc4bdc5542650aa391d26d7bfd1754b7886f84d13ea1bfb16bb9
MD5 c2a40236082d2a1655a8f49ff3ff69ab
BLAKE2b-256 e5e2af07cb119369e45fca2d8af442fa9b94ae6431ad45b0d8dc261eb8d7af75

See more details on using hashes here.

File details

Details for the file openvino-2024.3.0-16041-cp38-cp38-macosx_10_15_x86_64.whl.

File metadata

File hashes

Hashes for openvino-2024.3.0-16041-cp38-cp38-macosx_10_15_x86_64.whl
Algorithm Hash digest
SHA256 404a51356942a909dae7b53073307d3a55faf2f405eab71a1de6fcc2635a0fcf
MD5 cf408f060222481772301eea348928e5
BLAKE2b-256 0cf82d9258a0d52eafeedaed8e0a0708cbf00d5f2d38e4674107add0a2cacc69

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page