Use OpenVoice 2 stage via console or python scripts
Project description
OpenVoice-cli
This fork, does not generate voice from text, it only uses the 2nd stage of voice2voice. Therefore, you need to have a sample and a voice already prepared
About
The second stage of OpenVoice "Tone color extractor" is used, via console or python scripts.
Feel free to make PRs or use the code for your own needs
Demo
https://github.com/daswer123/OpenVoice-cli/assets/22278673/7b4255eb-7797-4370-825a-81f2c67c8f90
Changelog
You can keep track of all changes on the release page
TODO
- Batch generation via console
- Possibility to use inference import through code
Installation
Simple installation :
pip install openvoice-cli
This will install all the necessary dependencies, including a CPU support only version of PyTorch
I recommend that you install the GPU version to improve processing speed ( up to 3 times faster )
Read the end of the README to learn how to install.
Windows
python -m venv venv
venv\Scripts\activate
pip install openvoice-cli
pip install torch torchvision torchaudio --index-url https://download.pytorch.org/whl/cu118
Linux
python -m venv venv
source venv\bin\activate
pip install openvoice-cli
pip install torch torchvision torchaudio --index-url https://download.pytorch.org/whl/cu118
Usage
This tool supports both single file and batch processing for audio tone color conversion using a reference audio file. Below are the commands for each mode of operation:
Single File Processing
python -m openvoice_cli single -i INPUT -r REF [-o OUTPUT] [-d DEVICE]
Batch Processing
python -m openvoice_cli batch -id INPUT_DIR -rf REF_FILE [-od OUTPUT_DIR] [-d DEVICE] [-of OUTPUT_FORMAT]
Options
Common Options
-h
,--help
:
Show this help message and exit.
Single File Processing Options
-
-i INPUT
,--input INPUT
(mandatory):
Path to the input audio file. -
-r REF
,--ref REF
(mandatory):
Path to the reference audio file for tone color extraction. -
-o OUTPUT
,--output OUTPUT
:
Designate the output path for the converted audio file. By default, the output will be saved as "out.wav" in the current directory. -
-d DEVICE
,--device DEVICE
:
Specify the device to use for processing; defaults to 'cpu'. Can be set to a CUDA device with 'cuda:0' if supported and desired.
Batch Processing Options
-
-id INPUT_DIR
,--input_dir INPUT_DIR
(mandatory):
Input directory containing audio files to process. -
-rf REF_FILE
,--ref_file REF_FILE
(mandatory):
Reference audio file path. -
-od OUTPUT_DIR
,--output_dir OUTPUT_DIR
:
Output directory for converted audio files. Defaults to "outputs". -
-d DEVICE
,--device DEVICE
:
Specify the processing device. Defaults to 'cuda' if available. -
-of OUTPUT_FORMAT
,--output_format OUTPUT_FORMAT
:
Output file format (e.g., ".wav"). Defaults to ".wav".
Example Commands via console
Single file processing
python -m openvoice_cli single -i ./test/test.wav -r ./test/ref.wav -o ./test/ready.wav
Batch processing
python -m openvoice_cli batch -id ./test/input_folder -rf ./test/ref.wav -od ./test/output_folder -of .mp3
Example via Python Code
For integrating the audio tone color conversion capabilities into your Python code, you can import and use the tune_one
and tune_batch
functions provided by the openvoice_cli
. Here are some examples on how to invoke these functions in a Python script:
Single File Conversion
from openvoice_cli import tune_one
# Set parameters for single file processing
input_file = 'path_to_input.wav'
ref_file = 'path_to_reference.wav'
output_file = 'path_to_output.wav'
device = 'cpu' # or 'cuda:0' for GPU processing
# Convert the tone color of a single audio file
tune_one(input_file=input_file, ref_file=ref_file, output_file=output_file, device=device)
Batch Processing
from openvoice_cli import tune_batch
# Set parameters for batch processing
input_dir = 'path_to_input_directory'
ref_file = 'path_to_reference.wav'
output_dir = 'path_to_output_directory'
device = 'cuda' # or 'cpu' for CPU processing
output_format = '.wav' # could be .mp3 or other formats
# Convert the tone color of multiple audio files in a directory
output = tune_batch(input_dir=input_dir, ref_file=ref_file, output_dir=output_dir, device=device, output_format=output_format)
In these examples:
- Replace
'path_to_input.wav'
,'path_to_reference.wav'
, and'path_to_output.wav'
with the actual file paths for your input, reference, and output audio files respectively. - Replace
'path_to_input_directory'
and'path_to_output_directory'
with the actual directories containing your input audio files and where you want the converted files to be saved. - The
device
parameter allows you to specify whether to perform processing using the CPU ('cpu'
) or GPU ('cuda:0'
). Ensure that your environment supports CUDA before attempting to use GPU acceleration.
License
This repository is licensed under MIT License
Original repository is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License, which prohibits commercial usage. MyShell reserves the ability to detect whether an audio is generated by OpenVoice, no matter whether the watermark is added or not.
Project details
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distribution
Built Distribution
File details
Details for the file openvoice_cli-0.0.5.tar.gz
.
File metadata
- Download URL: openvoice_cli-0.0.5.tar.gz
- Upload date:
- Size: 1.8 MB
- Tags: Source
- Uploaded using Trusted Publishing? No
- Uploaded via: python-httpx/0.23.0
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 3090c827267013e81476f06aabd162286d3ab90b59a32489cf00a6f907d38310 |
|
MD5 | d8311fa3592d36cb32492db35aacc761 |
|
BLAKE2b-256 | a3c12e3e8ebb1206b73d9b2eba99517792deed05cfc447e60338dfa1c5436f0c |
File details
Details for the file openvoice_cli-0.0.5-py3-none-any.whl
.
File metadata
- Download URL: openvoice_cli-0.0.5-py3-none-any.whl
- Upload date:
- Size: 44.8 kB
- Tags: Python 3
- Uploaded using Trusted Publishing? No
- Uploaded via: python-httpx/0.23.0
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | b04af2a8a944c44ba128375df3bca04a125057cb247617957607cec32828acb5 |
|
MD5 | ff34866112105200d30dcaa0f8bbf673 |
|
BLAKE2b-256 | 42bfc74b9b8365c42ec8a55aef07c209259c1023c183fecdb97e2372ded6b41e |