Skip to main content

Opfunu: An Open-source Python Library for Optimization Benchmark Functions

Project description

OPFUNU


GitHub release Wheel PyPI version PyPI - Python Version PyPI - Status PyPI - Downloads Downloads Tests & Publishes to PyPI GitHub Release Date Documentation Status Chat Average time to resolve an issue Percentage of issues still open GitHub contributors GitTutorial DOI License: GPL v3

OPFUNU (OPtimization benchmark FUnctions in NUmpy) is the largest python library for cutting-edge numerical optimization benchmark functions. Contains all CEC competition functions from 2005, 2008, 2010, 2013, 2014, 2015, 2017, 2019, 2020, 2021, 2022. Besides, more than 300 traditional functions with different dimensions are implemented.

  • Free software: GNU General Public License (GPL) V3 license
  • Total problems: > 500 problems
  • Documentation: https://opfunu.readthedocs.io
  • Python versions: >= 3.7.x
  • Dependencies: numpy, matplotlib

Citation Request

Please include these citations if you plan to use this library:

  • LaTeX:
  @article{Van_Thieu_2024_Opfunu,
      author = {Van Thieu, Nguyen},
      title = {Opfunu: An Open-source Python Library for Optimization Benchmark Functions},
      doi = {10.5334/jors.508},
      journal = {Journal of Open Research Software},
      month = {May},
      year = {2024}
  }
  • APA:

    Van Thieu, N. (2024). Opfunu: An Open-source Python Library for Optimization Benchmark Functions. Journal of Open Research Software, 12(1), 8. https://doi.org/10.5334/jors.508

Installation and Usage

Install with pip

Install the current PyPI release:

$ pip install opfunu

After installation, you can import and check version of Opfunu:

$ python
>>> import opfunu
>>> opfunu.__version__

>>> dir(opfunu)
>>> help(opfunu)

>>> opfunu.FUNC_DATABASE      # List all name_based functions
>>> opfunu.CEC_DATABASE       # List all cec_based functions
>>> opfunu.ALL_DATABASE       # List all functions in this library

>>> opfunu.get_functions_by_classname("MiShra04")
>>> opfunu.get_functions_based_classname("2015")
>>> opfunu.get_functions_by_ndim(2)
>>> opfunu.get_functions_based_ndim(50)

>>> opfunu.get_name_based_functions(ndim=10, continuous=True)
>>> opfunu.get_cec_based_functions(ndim=2)

Let's go through some examples.

Examples

How to get the function and use it

1st way

from opfunu.cec_based.cec2014 import F12014

func = F12014(ndim=30)
func.evaluate(func.create_solution())

## or

from opfunu.cec_based import F102014

func = F102014(ndim=50)
func.evaluate(func.create_solution())

2nd way

import opfunu

funcs = opfunu.get_functions_by_classname("F12014")
func = funcs[0](ndim=10)
func.evaluate(func.create_solution())

## or

all_funcs_2014 = opfunu.get_functions_based_classname("2014")
print(all_funcs_2014)

How to draw 2D, 3D

Two ways if you want to draw functions that available in Opfunu.

from opfunu.cec_based import F12010
f0 = F12010()

# Visualize opfunu function using method in object
f0.plot_2d(selected_dims=(2, 3), n_points=300, ct_cmap="viridis", ct_levels=30, ct_alpha=0.7,
           fixed_strategy="mean", fixed_values=None, title="Contour map of the F1 CEC 2010 function",
           x_label=None, y_label=None, figsize=(10, 8), filename="2d-f12010", exts=(".png", ".pdf"), verbose=True)

f0.plot_3d(selected_dims=(1, 6), n_points=500, ct_cmap="viridis", ct_levels=30, ct_alpha=0.7,
           fixed_strategy="mean", fixed_values=None, title="3D visualization of the F1 CEC 2010 function",
           x_label=None, y_label=None, figsize=(10, 8), filename="3d-f12010", exts=(".png", ".pdf"), verbose=True)

## Visualize opfunu function using utility function
from opfunu import draw_2d, draw_3d

draw_2d(f0.evaluate, f0.lb, f0.ub, selected_dims=(2, 3), n_points=300)
draw_3d(f0.evaluate, f0.lb, f0.ub, selected_dims=(2, 3), n_points=300)
F1-2010 CEC 2D

F1-2010 CEC 2D

F1-2010 CEC 3D

F1-2010 CEC 3D

How to draw Latex

Two ways if you want to draw latex equation.

from opfunu.cec_based import F12010
from opfunu.name_based import Ackley02
from opfunu.utils.visualize import draw_latex

f0 = F12010()
f1 = Ackley02()

## Plot using function inside the object
f0.plot_latex(f0.latex_formula, figsize=(8, 3), dpi=500, title="Latex equation", exts=(".png", ".pdf"), verbose=True)
f1.plot_latex(f1.latex_formula_global_optimum, figsize=(8, 3), dpi=500, title="Global optimum", verbose=True)

## Plot using module
draw_latex(f0.latex_formula_bounds, title="Boundary for Function")
draw_latex(f1.latex_formula_dimension, title=None)

For more usage examples please look at examples folder.

Contributing

There are lots of ways how you can contribute to Permetrics's development, and you are welcome to join in! For example, you can report problems or make feature requests on the issues pages. To facilitate contributions, please check for the guidelines in the CONTRIBUTING.md file.

Official channels


Developed by: Thieu @ 2023

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

opfunu-1.0.4.tar.gz (12.3 MB view details)

Uploaded Source

Built Distribution

opfunu-1.0.4-py3-none-any.whl (13.0 MB view details)

Uploaded Python 3

File details

Details for the file opfunu-1.0.4.tar.gz.

File metadata

  • Download URL: opfunu-1.0.4.tar.gz
  • Upload date:
  • Size: 12.3 MB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.1.0 CPython/3.9.19

File hashes

Hashes for opfunu-1.0.4.tar.gz
Algorithm Hash digest
SHA256 1ae4e83f435c155d6a6ad28f6118d78df8c73d6827a59323167637d6a1d3bf07
MD5 4c5ec7f3d19b2606bfaf2090c858db52
BLAKE2b-256 e05885896b99b009be89825a672e2f108b4ee5cbc8d9c3f553fc9e6640ddb97a

See more details on using hashes here.

File details

Details for the file opfunu-1.0.4-py3-none-any.whl.

File metadata

  • Download URL: opfunu-1.0.4-py3-none-any.whl
  • Upload date:
  • Size: 13.0 MB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.1.0 CPython/3.9.19

File hashes

Hashes for opfunu-1.0.4-py3-none-any.whl
Algorithm Hash digest
SHA256 ca2af1816552cb28ac4eb71519627bc32e8000514b6b7b34a654f70afbbd2240
MD5 d8a3eb913cbffa413a82e59f71c892d8
BLAKE2b-256 5c8356a5d39c16fcfbd9665afbbf04e4d770bdb93d93a69a08483767efb6e430

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page