Ople Python Client
Project description
Ople Client
Table of Contents
- Overview
- Installation and Setup
- Python Client
- Terminal Client
Overview
Ople has created two clients to simplify the integration with your codebase and help you be more productive. You can use the python client to connect to your Ople models with your python code. You can also leverage the ople-client command to make predictions directly from the terminal.
Installation and Setup
- Install python3
- Run pip3 install ople (If it doesnt work run python3 -m pip install ople)
- Setup ENV variables to make the workflow easier
- Run
export OPLE_KEY="<YOUR OPLE_KEY>"
- Run
export OPLE_SECRET="<YOUR OPLE_SECRET>"
- Run
export OPLE_MODEL_ID="<YOUR OPLE_MODEL_ID>"
- Run
- If you want to use S3 to get data then you need to setup aws
- Run
export AWS_KEY="<YOUR AWS_KEY>"
- Run
export AWS_SECRET="<YOUR AWS_SECRET>"
- Run
Python Client
Use the python code snippet below. All you need to update is the code for getting the input. The client handles the following inputs:
- Dictionary with S3 information: '{"bucket": "", "path": ""}'`
- Path to Local CSV File
- String in CSV format
- Dictioanry in Ople Format:
'{"columns": [<YOUR COLUMNS>], "rows": [[<YOUR ROW>]]}'
- Pandas DataFrame
Here is the code snippet:
from ople.client import OpleClient
import os
# ****************************************************
input = "<YOUR CODE TO GET INPUT>"
# ****************************************************
# Specify what model to run
ople_key = os.environ['OPLE_KEY']
ople_secret = os.environ['OPLE_SECRET']
ople_model_id = os.environ['OPLE_MODEL_ID']
# OPTIONAL Parameters to use S3 to upload
aws_key = os.environ['AWS_KEY']
aws_secret = os.environ['AWS_SECRET']
# Connect to Specified Model
if aws_key or aws_key:
model = OpleClient(ople_key, ople_secret, ople_model_id)
else:
model = OpleClient(ople_key, ople_secret, ople_model_id, aws_key, aws_secret)
# Specify Prediction Parameters
shap = False
global_shap = False
allow_unknown_categories = True
# Make a Prediction with model
result = model.predict(input,
shap=shap,
global_shap=global_shap,
allow_unknown_categories=allow_unknown_categories)
Terminal Client
To run the terminal client you need to follow the installation and setup steps above. After that
you will be able to run the ople-client
command. Here are the parameters you can specify:
- '-s', '--shap': This flag returns the shap values for each predictions
- '-g', '--global_shap': This flag returns the Global Shap values for each predictions
- '-u', '--allow_unknown_categories': This flag
- '-K', '--key': This will set the ople key to whatever comes after it
- '-S', '--secret': : This will set the ople secret to whatever comes after it
- '-ID', '--model_id': : This will set the model_id to whatever comes after it
- '-AS', '--aws_secret': : This will set the AWS secret to whatever comes after it
- '-AK', '--aws_key': : This will set the AWS key to whatever comes after it
Here are some examples of how to run the command:
ople-client -u -s -g '<YOUR FILE PATH>/<FILENAME>'
ople-client -u -s -g '{"bucket": "<YOUR BUCKET>", "path": "<YOUR S3 FILEPATH>"}'
ople-client -u -s -g '<YOUR CSV STRING>'
ople-client -u -s -g '{"columns": [<YOUR COLUMNS>], "rows": [[<YOUR ROW>]]}'
Project details
Release history Release notifications | RSS feed
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.