orthogonal projective non-negative matrix factorization
Project description
opnmf
Orthogonal projective non-negative matrix factorization
Citing
If you use this software, consider citing:
Sotiras A, Resnick SM, Davatzikos C. Finding imaging patterns of structural covariance via Non-Negative Matrix Factorization. Neuroimage. 2015;108:1-16. doi:10.1016/j.neuroimage.2014.11.045
Project details
Release history Release notifications | RSS feed
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distribution
opnmf-0.0.1.tar.gz
(2.8 MB
view details)
Built Distribution
opnmf-0.0.1-py3-none-any.whl
(19.6 kB
view details)
File details
Details for the file opnmf-0.0.1.tar.gz
.
File metadata
- Download URL: opnmf-0.0.1.tar.gz
- Upload date:
- Size: 2.8 MB
- Tags: Source
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/3.4.2 importlib_metadata/4.8.1 pkginfo/1.7.1 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.2 CPython/3.9.7
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 00558399a154776499a156bf8db066e76a613af2cf373419deb6447464d4c52d |
|
MD5 | 6c24da3d4692764b47be384fd676756e |
|
BLAKE2b-256 | 3bf27bc2f4c55fa82d922c6a3ba4ae98c35977b56fee057b72503957bc78c59c |
File details
Details for the file opnmf-0.0.1-py3-none-any.whl
.
File metadata
- Download URL: opnmf-0.0.1-py3-none-any.whl
- Upload date:
- Size: 19.6 kB
- Tags: Python 3
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/3.4.2 importlib_metadata/4.8.1 pkginfo/1.7.1 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.2 CPython/3.9.7
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | dbaa8ecfc8f66cdb09cb24c21e0fb6962f73d88e518485154043d4006ed3356b |
|
MD5 | 9ffc4d9fed4f517ede8e8085c147fc57 |
|
BLAKE2b-256 | 415cc579ef7426c230146377844b946b194618f7bfd64321f2e60c3fd9c94b30 |