A simple pythonic programming language for Smart Contracts on Cardano
Project description
You are building what you want. Why not also build how you want?
This is an implementation of smart contracts for Cardano which are written in a strict subset of valid Python. The general philosophy of this project is to write a compiler that ensure the following:
If the program compiles then:
- it is a valid Python program
- the output running it with python is the same as running it on-chain.
Why opshin?
- 100% valid Python. Leverage the existing tool stack for Python, syntax highlighting, linting, debugging, unit-testing, property-based testing, verification
- Intuitive. Just like Python.
- Flexible. Imperative, functional, the way you want it.
- Efficient & Secure. Static type inference ensures strict typing and optimized code
Getting Started
OpShin Pioneer Program
Check out the opshin-pioneer-program for a host of educational example contracts, test cases and off-chain code.
Example repository
Check out the opshin-starter-kit repository for a quick start in setting up a development environment and compiling some sample contracts yourself.
You can replace the contracts in your local copy of the repository with code from the
examples
section here to start exploring different contracts.
Developer Community and Questions
This repository contains a discussions page. Feel free to open up a new discussion with questions regarding development using opshin and using certain features. Others may be able to help you and will also benefit from the previously shared questions.
Check out the community here
You can also chat with other developers in the welcoming discord community of OpShin
Installation
Install Python 3.8, 3.9, 3.10 or 3.11. Then run
python3 -m pip install opshin
Writing a Smart Contract
A short non-complete introduction in starting to write smart contracts follows.
- Make sure you understand EUTxOs, Addresses, Validators etc on Cardano. There is a wonderful crashcourse by @KtorZ. The contract will work on these concepts
- Make sure you understand python. opshin works like python and uses python. There are tons of tutorials for python, choose what suits you best.
- Make sure your contract is valid python and the types check out. Write simple contracts first and run them using
opshin eval
to get a feeling for how they work. - Make sure your contract is valid opshin code. Run
opshin compile
and look at the compiler erros for guidance along what works and doesn't work and why. - Dig into the
examples
to understand common patterns. Check out theprelude
for understanding how the Script Context is structured and how complex datums are defined. - Check out the sample repository to find a sample setup for developing your own contract.
In summary, a smart contract in opshin is defined by the function validator
in your contract file.
The function validates that a specific value can be spent, minted, burned, withdrawn etc, depending
on where it is invoked/used as a credential.
If the function fails (i.e. raises an error of any kind such as a KeyError
or AssertionError
)
the validation is denied, and the funds can not be spent, minted, burned etc.
There is a subtle difference here in comparison to most other Smart Contract languages. In opshin a validator may return anything (in particular also
False
) - as long as it does not fail, the execution is considered valid. This is more similar to how contracts in Solidity always pass, unless they run out of gas or hit an error. So make sure toassert
what you want to ensure to hold for validation!
A simple contract called the "Gift Contract" verifies that only specific wallets can withdraw money.
They are authenticated by a signature.
If you don't understand what a pubkeyhash is and how this validates anything, check out this gentle introduction into Cardanos EUTxO.
Also see the tutorial by pycardano
for explanations on what each of the parameters to the validator means
and how to build transactions with the contract.
from opshin.prelude import *
@dataclass()
class WithdrawDatum(PlutusData):
pubkeyhash: bytes
def validator(datum: WithdrawDatum, redeemer: None, context: ScriptContext) -> None:
sig_present = False
for s in context.tx_info.signatories:
if datum.pubkeyhash == s:
sig_present = True
assert sig_present, "Required signature missing"
All contracts written in opshin are 100% valid python.
Minting policies expect only a redeemer and script context as argument.
Check out the Architecture guide
for details on how to write double functioning contracts.
The examples
folder contains more examples.
Also check out the opshin-pioneer-program
and opshin-starter-kit repo.
Compiling
Write your program in python. You may start with the content of examples
.
Arguments to scripts are passed in as Plutus Data objects in JSON notation.
You can run any of the following commands
# Evaluate script in Python - this can be used to make sure there are no obvious errors
opshin eval spending examples/smart_contracts/assert_sum.py "{\"int\": 4}" "{\"int\": 38}" d8799fd8799f9fd8799fd8799fd8799f582055d353acacaab6460b37ed0f0e3a1a0aabf056df4a7fa1e265d21149ccacc527ff01ffd8799fd8799fd87a9f581cdbe769758f26efb21f008dc097bb194cffc622acc37fcefc5372eee3ffd87a80ffa140a1401a00989680d87a9f5820dfab81872ce2bbe6ee5af9bbfee4047f91c1f57db5e30da727d5fef1e7f02f4dffd87a80ffffff809fd8799fd8799fd8799f581cdc315c289fee4484eda07038393f21dc4e572aff292d7926018725c2ffd87a80ffa140a14000d87980d87a80ffffa140a14000a140a1400080a0d8799fd8799fd87980d87a80ffd8799fd87b80d87a80ffff80a1d87a9fd8799fd8799f582055d353acacaab6460b37ed0f0e3a1a0aabf056df4a7fa1e265d21149ccacc527ff01ffffd87980a15820dfab81872ce2bbe6ee5af9bbfee4047f91c1f57db5e30da727d5fef1e7f02f4dd8799f581cdc315c289fee4484eda07038393f21dc4e572aff292d7926018725c2ffd8799f5820746957f0eb57f2b11119684e611a98f373afea93473fefbb7632d579af2f6259ffffd87a9fd8799fd8799f582055d353acacaab6460b37ed0f0e3a1a0aabf056df4a7fa1e265d21149ccacc527ff01ffffff
# Compile script to 'uplc', the Cardano Smart Contract assembly
opshin compile spending examples/smart_contracts/assert_sum.py
Furthermore, you can add a shebang to the first line of the python file to indicate that it represents an opshin smart contract. You can choose from the following options:
- a general shebang:
#!opshin
, which representsopshin eval any
- or a more specific purpose:
#!/usr/bin/env -S opshin eval minting
By doing so, you can transform your python file to an executable: chmod +x your_file.py
and execute it with ./your_file.py
, which will run opshin eval any ./your_file.py
under the hood.
Deploying
The deploy process generates all artifacts required for usage with common libraries like pycardano, lucid and the cardano-cli.
# Automatically generate all artifacts needed for using this contract
opshin build spending examples/smart_contracts/assert_sum.py
See the tutorial by pycardano
for explanations how to build transactions with opshin
contracts.
The small print
Not every valid python program is a valid smart contract.
Not all language features of python will or can be supported.
The reasons are mainly of practical nature (i.e. we can't infer types when functions like eval
are allowed).
Specifically, only a pure subset of python is allowed.
Further, only immutable objects may be generated.
For your program to be accepted, make sure to only make use of language constructs supported by the compiler. You will be notified of which constructs are not supported when trying to compile.
You can also make use of the built-in linting command and check it for example with the following command:
opshin lint spending examples/smart_contracts/assert_sum.py
Name
Eopsin (Korean: 업신; Hanja: 業神) is the goddess of the storage and wealth in Korean mythology and shamanism. [...] Eopsin was believed to be a pitch-black snake that had ears. [1]
Since this project tries to merge Python (a large serpent) and Pluto/Plutus (Greek wealth gods), the name appears fitting. The name e_opsin is pronounced op-shin. e
Debugging artefacts
For debugging purposes, you can also run
# Compile script to 'uplc', and evaluate the script in UPLC (for debugging purposes)
opshin eval_uplc spending examples/smart_contracts/assert_sum.py "{\"int\": 4}" "{\"int\": 38}" d8799fd8799f9fd8799fd8799fd8799f582055d353acacaab6460b37ed0f0e3a1a0aabf056df4a7fa1e265d21149ccacc527ff01ffd8799fd8799fd87a9f581cdbe769758f26efb21f008dc097bb194cffc622acc37fcefc5372eee3ffd87a80ffa140a1401a00989680d87a9f5820dfab81872ce2bbe6ee5af9bbfee4047f91c1f57db5e30da727d5fef1e7f02f4dffd87a80ffffff809fd8799fd8799fd8799f581cdc315c289fee4484eda07038393f21dc4e572aff292d7926018725c2ffd87a80ffa140a14000d87980d87a80ffffa140a14000a140a1400080a0d8799fd8799fd87980d87a80ffd8799fd87b80d87a80ffff80a1d87a9fd8799fd8799f582055d353acacaab6460b37ed0f0e3a1a0aabf056df4a7fa1e265d21149ccacc527ff01ffffd87980a15820dfab81872ce2bbe6ee5af9bbfee4047f91c1f57db5e30da727d5fef1e7f02f4dd8799f581cdc315c289fee4484eda07038393f21dc4e572aff292d7926018725c2ffd8799f5820746957f0eb57f2b11119684e611a98f373afea93473fefbb7632d579af2f6259ffffd87a9fd8799fd8799f582055d353acacaab6460b37ed0f0e3a1a0aabf056df4a7fa1e265d21149ccacc527ff01ffffff
# Compile script to 'pluto', an intermediate language (for debugging purposes)
opshin compile_pluto spending examples/smart_contracts/assert_sum.py
Contributing
Developing and Technical Documentation
Generally, all contributions on the code side are very welcome. To get an overview over the architecture and idea behind OpShin, check out the Technical Documentation.
Sponsoring
You can sponsor the development of opshin through GitHub or Patreon or just by sending ADA. Drop me a message on social media and let me know what it is for.
- Patreon Support OpShin at Patreon to enjoy member benefits!
- GitHub Sponsor the developers of this project through the button "Sponsor" next to them
- ADA Donation in ADA can be submitted to
$opshin
oraddr1qyz3vgd5xxevjy2rvqevz9n7n7dney8n6hqggp23479fm6vwpj9clsvsf85cd4xc59zjztr5zwpummwckmzr2myjwjns74lhmr
.
Supporters
The main sponsor of this project is Inversion. Here is a word from them!
At Inversion, we pride ourselves on our passion for life and our ability to create exceptional software solutions for our clients. Our team of experts, with over a century of cumulative experience, is dedicated to harnessing the power of the Cardano blockchain to bring innovative and scalable decentralized applications to life. We've successfully built applications for NFT management, staking and delegation, chain data monitoring, analytics, and web3 integrations, as well as countless non-blockchain systems. With a focus on security, transparency, and sustainability, our team is excited to contribute to the Cardano ecosystem, pushing the boundaries of decentralized technologies to improve lives worldwide. Trust Inversion to be your go-to partner for robust, effective, and forward-thinking solutions, whether blockchain based, traditional systems, or a mix of the two.
They have recently started a podcast, called "Africa On Chain", which you can check out here: https://www.youtube.com/@africaonchain
Project details
Release history Release notifications | RSS feed
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distribution
Built Distribution
File details
Details for the file opshin-0.15.0.tar.gz
.
File metadata
- Download URL: opshin-0.15.0.tar.gz
- Upload date:
- Size: 79.9 kB
- Tags: Source
- Uploaded using Trusted Publishing? No
- Uploaded via: poetry/1.5.1 CPython/3.8.16 Linux/5.15.0-1040-azure
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | f6dd6ca16946d784c6906341dc226ab5e0d72acf23fcbb2b4636b71ac53bc4e8 |
|
MD5 | 0ebde410fe6234be9634d8e23116d34b |
|
BLAKE2b-256 | bd5dff7d0785ef2f65ee44069336663a80d1de70376dae5fd90612efedb8ae4c |
File details
Details for the file opshin-0.15.0-py3-none-any.whl
.
File metadata
- Download URL: opshin-0.15.0-py3-none-any.whl
- Upload date:
- Size: 90.1 kB
- Tags: Python 3
- Uploaded using Trusted Publishing? No
- Uploaded via: poetry/1.5.1 CPython/3.8.16 Linux/5.15.0-1040-azure
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 7de297ec3ac68ef682213aa288db87be16c37d04b456d2dcc1b6b431ca205434 |
|
MD5 | 0516cece6baa0c6c18643b9f7a4cdafd |
|
BLAKE2b-256 | b3ec6e18c452853efed0281dcccb2cc3d759e032f4e77edaf386ca055d018fef |