Skip to main content

OptCAT (= Optuna + CatBoost) provides a scikit-learn compatible estimator that tunes hyperparameters in CatBoost with Optuna.

Project description

OptCAT

Actions Status License: MIT

OptCAT (= Optuna + CatBoost) provides a scikit-learn compatible estimator that tunes hyperparameters in CatBoost with Optuna.

This Repository is very influenced by Y-oHr-N/OptGBM.

Examples

from optcat.core import CatBoostClassifier
from sklearn import datasets

params = {
        "bootstrap_type": "Bayesian",
        "loss_function": "Logloss",
        "iterations": 100
    }

model = CatBoostClassifier(params=params, n_trials=5)
data, target = datasets.load_breast_cancer(return_X_y=True)
model.fit(X=data, y=target)

Installation

pip install git+https://github.com/wakamezake/OptCAT.git

Testing

poetry run pytest

Project details


Release history Release notifications

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Files for optcat, version 0.1.0
Filename, size File type Python version Upload date Hashes
Filename, size OptCAT-0.1.0-py3-none-any.whl (5.2 kB) File type Wheel Python version py3 Upload date Hashes View
Filename, size optcat-0.1.0.tar.gz (5.1 kB) File type Source Python version None Upload date Hashes View

Supported by

Pingdom Pingdom Monitoring Google Google Object Storage and Download Analytics Sentry Sentry Error logging AWS AWS Cloud computing DataDog DataDog Monitoring Fastly Fastly CDN DigiCert DigiCert EV certificate StatusPage StatusPage Status page