Skip to main content

Optuna + LightGBM \= OptGBM

Project description

OptGBM

Python package codecov PyPI PyPI - License Binder

OptGBM (= Optuna + LightGBM) provides a scikit-learn compatible estimator that tunes hyperparameters in LightGBM with Optuna.

Examples

import optgbm as lgb
from sklearn.datasets import load_boston

reg = lgb.LGBMRegressor(random_state=0)
X, y = load_boston(return_X_y=True)

reg.fit(X, y)

y_pred = reg.predict(X, y)

By default, the following hyperparameters will be searched.

  • bagging_fraction
  • bagging_freq
  • feature_fractrion
  • lambda_l1
  • lambda_l2
  • max_depth
  • min_data_in_leaf
  • num_leaves

Installation

pip install optgbm

Testing

tox

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

OptGBM-0.10.0.tar.gz (17.8 kB view hashes)

Uploaded Source

Built Distribution

OptGBM-0.10.0-py3-none-any.whl (13.5 kB view hashes)

Uploaded Python 3

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page