Optuna + LightGBM \= OptGBM
Project description
OptGBM
OptGBM (= Optuna + LightGBM) provides a scikit-learn compatible estimator that tunes hyperparameters in LightGBM with Optuna.
Examples
import optgbm as lgb
from sklearn.datasets import load_boston
reg = lgb.LGBMRegressor(random_state=0)
X, y = load_boston(return_X_y=True)
reg.fit(X, y)
y_pred = reg.predict(X, y)
By default, the following hyperparameters will be searched.
bagging_fraction
bagging_freq
feature_fractrion
lambda_l1
lambda_l2
max_depth
min_data_in_leaf
num_leaves
Installation
pip install optgbm
Testing
tox
Project details
Release history Release notifications | RSS feed
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distribution
OptGBM-0.10.0.tar.gz
(17.8 kB
view hashes)
Built Distribution
OptGBM-0.10.0-py3-none-any.whl
(13.5 kB
view hashes)