A splinters to scripts generator
Project description
Optibot
Create splinters like this
{{ optiid("splinter1") }}
{{ optitask("model") }}
{{ optitask("train") }}
{{ optitask("classification") }}
{{ optiimport("from sklearn.ensemble import RandomForestClassifier")}}
{{ optivar("model")}}
{{ optivar("X")}}
{{ optivar("y")}}
{{ optiparam("n_estimators", "int", min=0, max=100) }}
{{ optiparam("random_state", "float", min=0, max=40000) }}
---
# Train a Lasso model with alpha=0.1
{{model}} = RandomForestClassifier(n_estimators={{n_estimators}}, random_state={{random_state}})
{{model}}.fit({{X}}, {{y}})
Use them in scripts templates like this
import numpy as np
{{ imports() }}
# Load data from CSV file using NumPy
data = np.loadtxt("data.csv", delimiter=",")
# Split the data into features (X) and labels (y)
features = data[:, :-1]
labels = data[:, -1]
# Train a classifier
{{ splinter("train", "model.train.classification", X="features", y="labels", model="clf") }}
# Test the trained classifier
score = clf.score(features, labels)
print("Accuracy: {:.2f}%".format(score * 100))
Generate random scripts with them
from src.optibot.core.optibot import OptiBot
bot = OptiBot()
bot.preload_splinters_from_path("./templates/splinters/*")
bot.preload_templates_from_path("./templates/scripts/*")
bot.compile()
for x in range(10):
subject = list(bot.generate_script())
with open(f"subject_{x + 1}.py", "w") as fp:
fp.write(bot.render("simple.jinja", subject))
Project details
Release history Release notifications | RSS feed
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distribution
optibot-0.0.1.tar.gz
(5.8 kB
view details)
Built Distribution
File details
Details for the file optibot-0.0.1.tar.gz
.
File metadata
- Download URL: optibot-0.0.1.tar.gz
- Upload date:
- Size: 5.8 kB
- Tags: Source
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/4.0.2 CPython/3.10.2
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 8d5106467f3e11432781f35277eea916ad5bcd126ab32c8dbf897a2023cf80ff |
|
MD5 | 8a2106e4c8f63c6f2a7c275c77e1707f |
|
BLAKE2b-256 | 5c83348a3d04cb718a69d3c0af62564cbfd600436ae9648cf89d91f3a3179cd2 |
File details
Details for the file optibot-0.0.1-py3-none-any.whl
.
File metadata
- Download URL: optibot-0.0.1-py3-none-any.whl
- Upload date:
- Size: 6.1 kB
- Tags: Python 3
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/4.0.2 CPython/3.10.2
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | f43718688807beb36fd909c4e316e1d1d2cd7404de032e61d14dcff2d6299646 |
|
MD5 | 74eeda31243a859fcc88be58692d4944 |
|
BLAKE2b-256 | 1770ff84625e81455f4c33b73afdcab7b1bb9538d107e636cd177c3a37be0803 |