Skip to main content

Calculate optics parameters from TWISS outputs.

Project description

optics_functions

Cron Testing Code Climate coverage Code Climate maintainability (percentage) GitHub last commit

PyPI Version GitHub release Conda-forge Version DOI

This package provides functions to calculate various optics parameters from MAD-X TWISS outputs, such as RDTs and coupling. The functionality mainly manipulates and returns TFS files or TfsDataFrame objects from our tfs-pandas package.

See the API documentation for details.

Installing

Installation is easily done via pip:

python -m pip install optics_functions

One can also install in a conda environment via the conda-forge channel with:

conda install -c conda-forge optics_functions

Example Usage

Warning: In certain scenarios, e.g. in case of non-zero closed orbit, the RDT calculations can be unreliable for thick lattices. Convert to a thin lattice by slicing the lattice to reduce the error of the analytical approximation.

Coupling Example:

import logging
import sys

import tfs  # tfs-pandas

from optics_functions.coupling import coupling_via_cmatrix, closest_tune_approach
from optics_functions.utils import split_complex_columns

logging.basicConfig(stream=sys.stdout, level=logging.INFO, format="%(message)s")

# read MAD-X twiss output
df_twiss = tfs.read("twiss.tfs", index="NAME")

# calculate coupling from the cmatrix
df_coupling = coupling_via_cmatrix(df_twiss)

# Example:
# print(df_coupling) 
#
#                            F1001               F1010  ...       C22     GAMMA
# NAME                                                  ...
# IP3          -0.000000+0.000004j -0.004026+0.003574j  ... -0.007140  1.000058
# MCBWV.4R3.B1  0.000001+0.000004j -0.002429+0.004805j  ... -0.009601  1.000058
# BPMW.4R3.B1   0.000001+0.000004j -0.002351+0.004843j  ... -0.009678  1.000058
# MQWA.A4R3.B1  0.000001+0.000004j -0.001852+0.005055j  ... -0.010102  1.000058
# MQWA.B4R3.B1  0.000001+0.000004j -0.001231+0.005241j  ... -0.010474  1.000058
# ...                          ...                 ...  ...       ...       ...
# MQWB.4L3.B1  -0.000000+0.000004j -0.005059+0.001842j  ... -0.003675  1.000058
# MQWA.B4L3.B1 -0.000000+0.000004j -0.004958+0.002098j  ... -0.004187  1.000058
# MQWA.A4L3.B1 -0.000000+0.000004j -0.004850+0.002337j  ... -0.004666  1.000058
# BPMW.4L3.B1  -0.000000+0.000004j -0.004831+0.002376j  ... -0.004743  1.000058
# MCBWH.4L3.B1 -0.000000+0.000004j -0.004691+0.002641j  ... -0.005274  1.000058


# calculate the closest tune approach from the complex rdts
df_dqmin = closest_tune_approach(
    df_coupling, qx=df_twiss.Q1, qy=df_twiss.Q2, method='calaga'
)

# Example:
# print(df_dqmin) 
#
#                  DELTAQMIN
# NAME
# IP3           1.760865e-07
# MCBWV.4R3.B1  1.760865e-07
# BPMW.4R3.B1   1.760866e-07
# MQWA.A4R3.B1  1.760865e-07
# MQWA.B4R3.B1  1.760865e-07
# ...                    ...
# MQWB.4L3.B1   1.760865e-07
# MQWA.B4L3.B1  1.760865e-07
# MQWA.A4L3.B1  1.760866e-07
# BPMW.4L3.B1   1.760865e-07
# MCBWH.4L3.B1  1.760865e-07

# do something with the data.
# (...)

# write out
# as the writer can only handle real data, 
# you need to split the rdts into real and imaginary parts before writing
tfs.write(
    "coupling.tfs",
    split_complex_columns(df_coupling, columns=["F1001", "F1010"]),
    save_index="NAME",
)

RDT Example:

import logging
import sys

import tfs  # tfs-pandas

from optics_functions.rdt import calculate_rdts, generator, jklm2str
from optics_functions.utils import prepare_twiss_dataframe, split_complex_columns

logging.basicConfig(stream=sys.stdout, level=logging.INFO, format="%(message)s")

# read MAD-X twiss output
df_twiss = tfs.read("twiss.tfs", index="NAME")

# generate all valid RDT names, here for RDTs of order 2
rdts = [jklm2str(*jklm) for jklm in generator(orders=[2])[2]]

# check correct signs (i.e if beam==4), merge twiss and errors, 
# add empty K(S)L columns if needed
df_twiss = prepare_twiss_dataframe(df_twiss=df_twiss, df_errors=None, max_order=5)

# do the actual rdt calculation
df_rdts = calculate_rdts(
    df_twiss,
    rdts=rdts,
    loop_phases=True,  # loop over phase-advance calculation, slower but saves memory
    feeddown=2,  # include feed-down up to this order
    complex_columns=True,  # complex output
)

# Example: 
# print(df_rdts) 
#                            F0002  ...               F2000
# NAME                              ...
# IP3           2.673376-1.045712j  ... -2.863617-0.789910j
# MCBWV.4R3.B1  2.475684-1.453081j  ... -1.927365-2.260426j
# BPMW.4R3.B1   2.470411-1.462027j  ... -1.862287-2.314336j
# MQWA.A4R3.B1  2.440763-1.511004j  ... -1.413706-2.612603j
# MQWA.B4R3.B1  2.228282-1.555324j  ... -0.788608-2.855177j
# ...                          ...  ...                 ...
# MQWB.4L3.B1   2.733194+0.167312j  ... -2.632290+0.135418j
# MQWA.B4L3.B1  2.763986-0.041253j  ... -2.713212+0.063256j
# MQWA.A4L3.B1  2.804960-0.235493j  ... -2.847616-0.017922j
# BPMW.4L3.B1   2.858218-0.266543j  ... -2.970384-0.032890j
# MCBWH.4L3.B1  2.831426-0.472735j  ... -2.966818-0.149180j

# do something with the rdts.
# (...)

# write out
# as the writer can only handle real data, either set real = True above 
# or split the rdts into real and imaginary parts before writing
tfs.write(
    "rdts.tfs",
    split_complex_columns(df_rdts, columns=rdts),
    save_index="NAME"
)

Appending Example:

import logging
import sys

import tfs  # tfs-pandas

from optics_functions.coupling import coupling_via_cmatrix, closest_tune_approach
from optics_functions.utils import split_complex_columns

logging.basicConfig(stream=sys.stdout, level=logging.INFO, format="%(message)s")

# read MAD-X twiss output
df_twiss = tfs.read("twiss.tfs", index="NAME")

# calculate coupling from the cmatrix and append to original dataframe
# output=['rdts'] is used to avoid the output of the gamma and C## columns.
df_twiss[["F1001", "F1010"]] = coupling_via_cmatrix(df_twiss, output=['rdts'])

# Example:
# print(df_twiss)
# 
# Headers:
# NAME: TWISS
# TYPE: TWISS
# SEQUENCE: LHCB1
# ...
# ORIGIN: 5.05.02 Linux 64
# DATE: 01/02/21
# TIME: 19.58.08
# 
#                  KEYWORD           S  ...               F1001               F1010
# NAME                                  ...
# IP3               MARKER      0.0000  ... -0.000000+0.000004j -0.004026+0.003574j
# MCBWV.4R3.B1     VKICKER     21.8800  ...  0.000001+0.000004j -0.002429+0.004805j
# BPMW.4R3.B1      MONITOR     22.5205  ...  0.000001+0.000004j -0.002351+0.004843j
# MQWA.A4R3.B1  QUADRUPOLE     26.1890  ...  0.000001+0.000004j -0.001852+0.005055j
# MQWA.B4R3.B1  QUADRUPOLE     29.9890  ...  0.000001+0.000004j -0.001231+0.005241j
# ...                  ...         ...  ...                 ...                 ...
# MQWB.4L3.B1   QUADRUPOLE  26628.2022  ... -0.000000+0.000004j -0.005059+0.001842j
# MQWA.B4L3.B1  QUADRUPOLE  26632.0022  ... -0.000000+0.000004j -0.004958+0.002098j
# MQWA.A4L3.B1  QUADRUPOLE  26635.8022  ... -0.000000+0.000004j -0.004850+0.002337j
# BPMW.4L3.B1      MONITOR  26636.4387  ... -0.000000+0.000004j -0.004831+0.002376j
# MCBWH.4L3.B1     HKICKER  26641.0332  ... -0.000000+0.000004j -0.004691+0.002641j

Modules

  • coupling - Functions to estimate coupling from twiss dataframes and different methods to calculate the closest tune approach from the calculated coupling RDTs. (coupling.py, doc)
  • rdt - Functions for the calculations of Resonance Driving Terms, as well as getting lists of valid driving term indices for certain orders. (rdt.py, doc)
  • utils - Helper functions to prepare the twiss dataframes for use with the optics functions as well as reusable utilities, that are needed within multiple optics calculations. (utils.py, doc)

License

This project is licensed under the MIT License - see the LICENSE file for details.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

optics_functions-0.1.2.tar.gz (19.5 kB view details)

Uploaded Source

Built Distribution

optics_functions-0.1.2-py3-none-any.whl (18.5 kB view details)

Uploaded Python 3

File details

Details for the file optics_functions-0.1.2.tar.gz.

File metadata

  • Download URL: optics_functions-0.1.2.tar.gz
  • Upload date:
  • Size: 19.5 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.7.13

File hashes

Hashes for optics_functions-0.1.2.tar.gz
Algorithm Hash digest
SHA256 40c8f5dac12a45f5b158a276e43bb402d817e58db1f24203181f126fc0fb9f87
MD5 f3bd52ddb5706f5fbe112c65973f5a66
BLAKE2b-256 c87d86030b0272b6997f5599767f9463a166de1a7ac2dc853992af193649bb59

See more details on using hashes here.

File details

Details for the file optics_functions-0.1.2-py3-none-any.whl.

File metadata

File hashes

Hashes for optics_functions-0.1.2-py3-none-any.whl
Algorithm Hash digest
SHA256 47132c60b7216ee70cb33fa234acd79f7c640112fa24976cfc6737cf60d54c06
MD5 dcc1a22f9867edba59445bf766e23ed8
BLAKE2b-256 103082613c12b52ca53db630fad3f91a7e52298519e80ddc8ecb72cf5e77338c

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page