Skip to main content

No project description provided

Project description

OptiLog: A Framework for SAT-based Systems

OptiLog is a Python framework for rapid prototyping of SAT-based systems. OptiLog includes functionality for loading and creating formulas, state-of-the-art SAT solvers, high level formula modelling, pseudo boolean and cardinality encodings, automatic configuration and experiment running and parsing.

OptiLog is designed to be simple and efficient. OptiLog can be used by field experts for tasks such as algorithm design, research and benchmarking, but it has also been successfully deployed in undergraduate Computational Logic courses. Moreover, OptiLog has been designed from the ground up to be modular and extensible through the abstract iSAT C++ interface.

Installation

OptiLog requires Python 3.8 to 3.11, and a Linux installation (currently supports x86_64). Wheels are distributed on PyPi.

To install OptiLog run:

$ pip install optilog

Why OptiLog

OptiLog has a fully modular dynamic Python binding generator for SAT solvers. This means that integrating new SAT solvers into OptiLog is as simple as implementing a C++ interface, and doesn't require any Python C API knowledge.

On top of that, OptiLog provides all the functionality required to develop and deploy complete SAT-based systems. We provide access to state-of-the-art automatic configuration tools to configure any kind of algorithm (not limited to SAT) as well as experiment-running and log-parsing modules.

Architecture

The main architecture of OptiLog is composed of the five main modules of the end-user OptiLog API that supports the creation of SAT based systems and the iSAT interface for SAT solver developers.

  • The Modelling module: The Modelling module provides a rich and compact formalism to model problems. In particular, this module allows modelling problems with non-CNF Boolean and Pseudo Boolean expressions that can be automatically transformed into the SAT formula provided by the Formulas module.

  • The Formula module: The Formulas module provides tools to load and manipulate SAT, MaxSAT, and QBF formulas.

  • The Solvers module: The Solvers module provides dynamic Python bindings for Python. It currently supports Solvers through the PyiSAT. These SAT solvers implement the iSAT interface.

  • The Encoders module: The Encoders module provides access to a set of encoders that can be used to translate constraints from one language to another. This module is currently composed of encoders for Pseudo-Boolean and Cardinality constraints into SAT.

  • The Tuning module: The Tuning module provides support to automatically configure Python functions.

  • The Running module: The Running module provides support to automatically generate execution scenarios that run experiments and collect logs.

  • The BlackBox module: The Blackbox module allows to encapsulate external applications into Python objects, which enables its interaction with the other modules from Optilog such as the Running module or the Tuning module.

SAT solver Examples

OptiLog deals with boolean variables represented by positive integers (DIMACS).

Here is an example using the well known Glucose41:

>>> from optilog.sat import Glucose41
>>> solver = Glucose41()
>>> solver.add_clause([1, 3])
>>> solver.add_clause([-1, -2])
>>> solver.solve(assumptions=[1])
True
>>> solver.model()
[1, -2, -3]

All SAT solvers are incremental, which means new clauses can be added after a solver has found a model:

>>> from optilog.sat import Glucose41
>>> solver = Glucose41()
>>> solver.add_clause([1, -2])
>>> solver.solve(assumptions=[1, 2])
True
>>> solver.model()
[1, 2]
>>> solver.add_clause([-1, -2])
>>> solver.solve(assumptions=[1, 2])
False
>>> solver.core()
[1]

CNF and WCNF formulas can also be directly loaded in to the solver:

>>> from optilog.sat import Glucose41
>>> solver = Glucose41()
>>> solver.load_cnf('./path/to/file')

Integrating a SAT solver

Adding a new SAT solver to OptiLog is super easy. Just create a class that implements your desired method of the iSAT interface. Here you can see an example of the Cadical wrapper implementing the addClause and solve methods:

CadicalWrapper::CadicalWrapper()
{
    solver = new CaDiCaL::Solver;
}

CadicalWrapper::~CadicalWrapper()
{
    delete solver;
}

void CadicalWrapper::addClause(const std::vector<int>& literals)
{
    for (auto i = literals.begin(); i != literals.end(); ++i)
    {
        solver->add(*i);
    }
    solver->add(0);
}

E_STATE CadicalWrapper::solve(const std::vector<int>& assumptions)
{
    for (auto i = assumptions.begin(); i != assumptions.end(); ++i)
    {
        solver->assume(*i);
    }
    return (solver->solve() == 10 ? E_STATE::SAT : E_STATE::UNSAT);
}

OPTILOG_C_INTERFACE(CadicalWrapper, "Cadical")

Then, the solver is compiled as a shared library and integrated into OptiLog by copying the library on the ~/.optilog_solvers/ directory. Please check the documentation for more details on how to integrate a SAT solver and add configurable parameters.

Documentation is available online

License & Documentation

OptiLog is free to use for academic use cases.

SatexBlackBox module depends on SAT Heritage and their docker images. If you use that module, you must also comply with their license.

For industrial use please contact the authors.

For more information you can find the full license for OptiLog here: License

Cite

@InProceedings{alos_et_al:LIPIcs.SAT.2022.25,
    author =	{Al\`{o}s, Josep and Ans\'{o}tegui, Carlos and Salvia, Josep M. and Torres, Eduard},
    title =	{{OptiLog V2: Model, Solve, Tune and Run}},
    booktitle =	{25th International Conference on Theory and Applications of Satisfiability Testing (SAT 2022)},
    pages =	{25:1--25:16},
    series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
    ISBN =	{978-3-95977-242-6},
    ISSN =	{1868-8969},
    year =	{2022},
    volume =	{236},
    editor =	{Meel, Kuldeep S. and Strichman, Ofer},
    publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
    address =	{Dagstuhl, Germany},
    URL =		{https://drops.dagstuhl.de/opus/volltexte/2022/16699},
    URN =		{urn:nbn:de:0030-drops-166996},
    doi =		{10.4230/LIPIcs.SAT.2022.25},
    annote =	{Keywords: Tool framework, Satisfiability, Modelling, Solving}
}

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distributions

No source distribution files available for this release.See tutorial on generating distribution archives.

Built Distributions

optilog-0.6.1-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (4.5 MB view details)

Uploaded CPython 3.12 manylinux: glibc 2.17+ x86-64

optilog-0.6.1-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (4.3 MB view details)

Uploaded CPython 3.11 manylinux: glibc 2.17+ x86-64

optilog-0.6.1-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (4.2 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ x86-64

optilog-0.6.1-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (4.2 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ x86-64

optilog-0.6.1-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (4.2 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ x86-64

File details

Details for the file optilog-0.6.1-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for optilog-0.6.1-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 db5746ed38a8e6190d89d32559f39d127c746df702bfb60ad29195584698c045
MD5 ca2083d6f5e2ef702b3984868b14def1
BLAKE2b-256 c9635880a03298f3546ab160032a3d6deff6a7f094fff5440a8e4c0b126c706f

See more details on using hashes here.

File details

Details for the file optilog-0.6.1-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for optilog-0.6.1-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 1c75aed83c4c428e31cd340ae74c6025c9216906f2b187214cb9495efed74da3
MD5 27639955c6f451b8878eef721e0c7a4e
BLAKE2b-256 24ecd745d596114dee157afebeebc4adeedb15cf380881758f1aa362c884e85a

See more details on using hashes here.

File details

Details for the file optilog-0.6.1-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for optilog-0.6.1-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 4950e5c97f0292435f809b214f20a6bcebca8876975307c6d73956fcc1b29ab4
MD5 65bc5d16e76c0c543bcd3cb14e783d82
BLAKE2b-256 f9b95783bf6ad17da10652437d4da25e226fd054edce3113be0db0737163bb26

See more details on using hashes here.

File details

Details for the file optilog-0.6.1-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for optilog-0.6.1-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 15f3dc1a86222bd5c481673d1597ffaeb612a2633012e8b1568c7c420953111c
MD5 c516e424fd550d6a8a3454cf9c65784a
BLAKE2b-256 3ea3f169f0c4968ce6f97977bc1143cf73b61be518e9d91ea1bbb082d67aa30c

See more details on using hashes here.

File details

Details for the file optilog-0.6.1-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for optilog-0.6.1-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 a798ddf3e6b94279d49e4052c820c2c7848b1fb4195531dacf6e211fafa1b672
MD5 33f5f21ec2bbeca1fe31416a14b4735b
BLAKE2b-256 ad88f2a4ca8e8be4f60055808939e4802d0ae6e8bb51640c7949a11a0ed7821f

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page