Skip to main content

Nonlinear optimisation in JAX and Equinox.

Project description

Optimistix

Optimistix is a JAX library for nonlinear solvers: root finding, minimisation, fixed points, and least squares.

Features include:

  • interoperable solvers: e.g. autoconvert root find problems to least squares problems, then solve using a minimisation algorithm.
  • modular optimisers: e.g. use a BFGS quadratic bowl with a dogleg descent path with a trust region update.
  • using a PyTree as the state.
  • fast compilation and runtimes.
  • interoperability with Optax.
  • all the benefits of working with JAX: autodiff, autoparallelism, GPU/TPU support etc.

Installation

pip install optimistix

Requires Python 3.9+ and JAX 0.4.14+ and Equinox 0.11.0+.

Documentation

Available at https://docs.kidger.site/optimistix.

Quick example

import jax.numpy as jnp
import optimistix as optx

# Let's solve the ODE dy/dt=tanh(y(t)) with the implicit Euler method.
# We need to find y1 s.t. y1 = y0 + tanh(y1)dt.

y0 = jnp.array(1.)
dt = jnp.array(0.1)

def fn(y, args):
    return y0 + jnp.tanh(y) * dt

solver = optx.Newton(rtol=1e-5, atol=1e-5)
sol = optx.fixed_point(fn, solver, y0)
y1 = sol.value  # satisfies y1 == fn(y1)

Citation

If you found this library to be useful in academic work, then please cite: (arXiv link)

@article{optimistix2024,
    title={Optimistix: modular optimisation in JAX and Equinox},
    author={Jason Rader and Terry Lyons and Patrick Kidger},
    journal={arXiv:2402.09983},
    year={2024},
}

See also: other libraries in the JAX ecosystem

Always useful
Equinox: neural networks and everything not already in core JAX!
jaxtyping: type annotations for shape/dtype of arrays.

Deep learning
Optax: first-order gradient (SGD, Adam, ...) optimisers.
Orbax: checkpointing (async/multi-host/multi-device).
Levanter: scalable+reliable training of foundation models (e.g. LLMs).

Scientific computing
Diffrax: numerical differential equation solvers.
Lineax: linear solvers.
BlackJAX: probabilistic+Bayesian sampling.
sympy2jax: SymPy<->JAX conversion; train symbolic expressions via gradient descent.
PySR: symbolic regression. (Non-JAX honourable mention!)

Awesome JAX
Awesome JAX: a longer list of other JAX projects.

Credit

Optimistix was primarily built by Jason Rader (@packquickly): Twitter; GitHub; Website.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

optimistix-0.0.9.tar.gz (54.6 kB view details)

Uploaded Source

Built Distribution

optimistix-0.0.9-py3-none-any.whl (83.6 kB view details)

Uploaded Python 3

File details

Details for the file optimistix-0.0.9.tar.gz.

File metadata

  • Download URL: optimistix-0.0.9.tar.gz
  • Upload date:
  • Size: 54.6 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.1.1 CPython/3.12.7

File hashes

Hashes for optimistix-0.0.9.tar.gz
Algorithm Hash digest
SHA256 b5e3ce9e6d111f399269c7565c68125bdf6bae9b8ff6cacf30232231159354ef
MD5 0e9a0f8e6b1af07a3634960319612f87
BLAKE2b-256 acb153e589b35d33785fac4b6ee4e8bf475505cd56c52651fe0da43456e96287

See more details on using hashes here.

File details

Details for the file optimistix-0.0.9-py3-none-any.whl.

File metadata

  • Download URL: optimistix-0.0.9-py3-none-any.whl
  • Upload date:
  • Size: 83.6 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.1.1 CPython/3.12.7

File hashes

Hashes for optimistix-0.0.9-py3-none-any.whl
Algorithm Hash digest
SHA256 d47d47ef520a4c4e37ff050c89793401cb7142009ef917a986bdc55f9d5db2aa
MD5 e6172f6ba2dbf0d27fd260f90faa850b
BLAKE2b-256 36941726f0a89ff40760ec2c789b4d5aba6fa283082208f23a707f3c01140f92

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page