PyPI package containing collection of optimization test functions and some useful methods for working with them
Project description
Optimization Test Functions
Collection of optimization test functions and some useful methods for working with them
pip install OptimizationTestFunctions
- Optimization Test Functions
Test function object
Each test function is the callable object of some class with next fields at least:
bounds
-- tuple with structure(xmin, xmax, ymin, ymax)
. It is recommended borders for 3D plotting and 2D optimization for this functionx_best
-- global minimum argument of function inbounds
area as numpy array. If unknown, it'sNone
f_best
-- function value atx_best
ifx_best
exists andNone
otherwise
A lot of function objects need determined dim
argument in constructor.
U can call these "functions" like usual functions with structure numpy 1D-array -> float value
.
Available test functions
Checklist:
Sphere(dim, degree = 2)
Ackley(dim)
AckleyTest(dim)
Rosenbrock(dim)
Fletcher(dim, seed = None)
Griewank(dim)
Penalty2(dim, a=5, k=100, m=4)
Quartic(dim)
Rastrigin(dim)
SchwefelDouble(dim)
SchwefelMax(dim)
SchwefelAbs(dim)
SchwefelSin(dim)
Stairs(dim)
Abs(dim)
Michalewicz(m = 10)
Scheffer(dim)
Eggholder(dim)
Weierstrass(dim, a = 0.5, b = 3, kmax = 20)
U imports them using code:
from OptimizationTestFunctions import Sphere, Ackley, AckleyTest, Rosenbrock, Fletcher, Griewank, Penalty2, Quartic, Rastrigin, SchwefelDouble, SchwefelMax, SchwefelAbs, SchwefelSin, Stairs, Abs, Michalewicz, Scheffer, Eggholder, Weierstrass
And plot them using code
Sphere
Ackley
AckleyTest
Rosenbrock
Fletcher
Griewank
Penalty2
Quartic
Rastrigin
SchwefelDouble
SchwefelMax
SchwefelAbs
SchwefelSin
Stairs
Abs
Michalewicz
Scheffer
Eggholder
Weierstrass
Plotting tools
Structure
There are plot_3d
function for 3D-plotting:
plot_3d(func, points_by_dim = 50, title = '', bounds = None, show_best_if_exists = True, save_as = None, cmap = 'twilight', plot_surface = True, plot_heatmap = True)
with arguments:
func
: class callable object; Object which can be called as function.points_by_dim
: int, optional; points for each dimension of plotting (50x50, 100x100...). The default is 50.title
: str, optional; title of plot with LaTeX notation. The default is ''.bounds
: tuple, optional; space bounds with structure(xmin, xmax, ymin, ymax)
. The default is None.show_best_if_exists
: boolean, optional; point best solution by arrow if x_best exists. The default is True.save_as
: str/None, optional; file path to save image (None if not needed). The default is None.cmap
: str, optional; color map of plot. The default is'twilight'
. See another cmaps examples hereplot_surface
: boolean, optional; plot 3D surface. The default is True.plot_heatmap
: boolean, optional; plot 2D heatmap. The default is True.
How to use
from OptimizationTestFunctions import Fletcher, plot_3d
# dim should be 2 for plotting 3D
dim = 2
# Fletcher is good function depends on random seed!
seed = 1
f1 = Fletcher(dim, seed)
# full available functional of plotting
plot_3d(f1,
points_by_dim = 70,
title = fr"{type(f1).__name__}\ with\ seed = {seed}", # LaTeX formula notation
bounds = None,
show_best_if_exists = True,
save_as = "Fletcher1.png",
cmap = 'twilight',
plot_surface = True,
plot_heatmap = True)
# disable arrow
plot_3d(f1,
points_by_dim = 70,
title = fr"{type(f1).__name__}\ with\ seed = {seed}",
bounds = None,
show_best_if_exists = False,
save_as = "Fletcher2.png",
cmap = 'twilight',
plot_surface = True,
plot_heatmap = True)
# select another bounds
plot_3d(f1,
points_by_dim = 70,
title = fr"{type(f1).__name__}\ with\ seed = {seed}",
bounds = (-2, 6, -8, 10),
show_best_if_exists = False,
save_as = "Fletcher3.png",
cmap = 'twilight',
plot_surface = True,
plot_heatmap = True)
# Create another Fletcher function
seed = 33
f2 = Fletcher(dim, seed)
# use another cmap
plot_3d(f2,
points_by_dim = 70,
title = fr"{type(f1).__name__}\ with\ seed = {seed}",
bounds = None,
show_best_if_exists = False,
save_as = "Fletcher4.png",
cmap = 'inferno',
plot_surface = True,
plot_heatmap = True)
# plot only 3D
plot_3d(f2,
points_by_dim = 70,
title = fr"{type(f1).__name__}\ with\ seed = {seed}",
bounds = None,
show_best_if_exists = False,
save_as = "Fletcher5.png",
cmap = 'inferno',
plot_surface = True,
plot_heatmap = False)
# plot only heatmap
plot_3d(f2,
points_by_dim = 70,
title = fr"{type(f1).__name__}\ with\ seed = {seed}",
bounds = None,
show_best_if_exists = True,
save_as = "Fletcher6.png",
cmap = 'inferno',
plot_surface = False,
plot_heatmap = True)
Transformation tools
Structure
Transformation
object is the callable object like "functions" of this package. It performs next useful transformations:
- parallel transfer (shift)
- rotation
- add noises
U can create Transformation
object using code:
transform = Transformation(transformed_function, shift_step = None, rotation_matrix = None, noise_generator = None, seed = None)
where:
transformed_function
: function or class callable object; transformed function.shift_step
: numpy 1D array/None, optional; array of shifts by each dimension orNone
. The default isNone
.rotation_matrix
: 2D-array/int/None, optional; 2D ortogonal rotation matrix or dimension for creating random rotation matrix orNone
if no rotate. The default isNone
.noise_generator
: function, optional; function gets current value and returns value with some noise. The default isNone
.seed
: int, optional; random seed for rotation matrix if needed reproduce. The default isNone
.
U also can create noises by using Noises
static class.
How to use
import numpy as np
from OptimizationTestFunctions import Weierstrass, plot_3d, Transformation, Noises
# dim should be 2 for plotting 3D
dim = 2
# Let's create Weierstrass function
f = Weierstrass(dim, a = 0.5, b = 5, kmax = 20)
# show it
plot_3d(f,
points_by_dim = 70,
title = f"{type(f).__name__}",
bounds = None,
show_best_if_exists = True,
save_as = "Trans1.png",
cmap = 'hot',
plot_surface = True,
plot_heatmap = True)
# transformation with shift
shifted_func = Transformation(f, shift_step=np.array([3, 4]))
# show it
plot_3d(shifted_func,
points_by_dim = 70,
title = "shifted",
bounds = None,
show_best_if_exists = True,
save_as = "Trans2.png",
cmap = 'hot',
plot_surface = True,
plot_heatmap = True)
# transformation with rotation
rotated_func = Transformation(f, rotation_matrix = dim, seed = 2) # random rotation matrix with dim 2
# show it
plot_3d(rotated_func,
points_by_dim = 70,
title = "rotated",
bounds = None,
show_best_if_exists = True,
save_as = "Trans3.png",
cmap = 'hot',
plot_surface = True,
plot_heatmap = True)
# transformation with noise
noised_func = Transformation(f, noise_generator = Noises.normal(center = 0, sd = 0.5))
# show it
plot_3d(noised_func,
points_by_dim = 70,
title = "noised",
bounds = None,
show_best_if_exists = True,
save_as = "Trans4.png",
cmap = 'hot',
plot_surface = True,
plot_heatmap = True)
# U can specify your noise behavior
def add_noise(current_val):
if current_val > 5:
return 0
return current_val + np.random.random()/10
noised_func = Transformation(f, noise_generator = add_noise)
plot_3d(noised_func,
points_by_dim = 70,
title = "noised",
bounds = None,
show_best_if_exists = True,
save_as = "Trans5.png",
cmap = 'hot',
plot_surface = True,
plot_heatmap = True)
# Also u can combine all these transformations
new_func = Transformation(f,
shift_step= np.array([10, -10]),
rotation_matrix = 2, seed = 3,
noise_generator = Noises.uniform(-0.1, 0.5)
)
plot_3d(new_func,
points_by_dim = 70,
title = "mixed",
bounds = None,
show_best_if_exists = True,
save_as = "Trans6.png",
cmap = 'hot',
plot_surface = True,
plot_heatmap = True)
Project details
Release history Release notifications | RSS feed
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distribution
Built Distribution
File details
Details for the file OptimizationTestFunctions-1.0.1.tar.gz
.
File metadata
- Download URL: OptimizationTestFunctions-1.0.1.tar.gz
- Upload date:
- Size: 9.8 kB
- Tags: Source
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/3.1.1 pkginfo/1.5.0.1 requests/2.23.0 setuptools/41.2.0 requests-toolbelt/0.9.1 tqdm/4.46.0 CPython/3.8.3
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 1d89a338687143e0162ab89723c1dc7243207fc785226fdb94aa52171c0cbafc |
|
MD5 | 5ac5b8117829612cd7517cf641140d39 |
|
BLAKE2b-256 | 2f99b497dfd97ca6a48a0d68530592c021fa75445342b1682e2ef44ad42e73e5 |
File details
Details for the file OptimizationTestFunctions-1.0.1-py3-none-any.whl
.
File metadata
- Download URL: OptimizationTestFunctions-1.0.1-py3-none-any.whl
- Upload date:
- Size: 10.1 kB
- Tags: Python 3
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/3.1.1 pkginfo/1.5.0.1 requests/2.23.0 setuptools/41.2.0 requests-toolbelt/0.9.1 tqdm/4.46.0 CPython/3.8.3
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 9c2847e9b66335070ad59f3f532a740b465f5c9138186a36a2d7c9d00caac7f2 |
|
MD5 | 866f304d30573cfb4171a5d835245bf3 |
|
BLAKE2b-256 | 998b6ff4e3e5dc0a189856f4bc77ba487d020bd52354b0b0e4ad67851c3e8d82 |