Skip to main content

Calcium Imaging Pipeline Tool

Project description

optinist optinist

PYPI PYPI

OptiNiSt(Optical Neuroimage Studio) is a GUI based workflow pipeline tools for processing two-photon calcium imaging data.

OptiNiSt helps researchers try multiple data analysis methods, visualize the results, and construct the data analysis pipelines easily and quickly on GUI. OptiNiSt's data-saving format follows NWB standards.

OptiNiSt also supports reproducibility of scientific research, standardization of analysis protocols, and developments of novel analysis tools as plug-in.

Support library

ROI detection

Postprocessing

  • Basic Neural Analysis(Event Trigger Average...)
  • Dimenstion Reduction(PCA...)
  • Neural Decoding(LDA...)
  • Neural Population Analysis(Correlation...)

Saving Format

Key Features

:beginner: Easy-To-Create Workflow

  • zero-knowledge of coding: OptiNiSt allows you to create analysis pipelines easily on the GUI.

:zap: Visualizing analysis results

  • quick visualization: OptiNiSt supports you visualize the analysis results by plotly.

:rocket: Managing Workflows

  • recording and reproducing: OptiNiSt records and reproduces the workflow pipelines easily.

Installation

Need anaconda or miniconda environment.

conda create -n optinist python=3.8
conda activate optinist

Install from pip.

pip install optinist

launch.

run_optinist

Open browser. http://localhost:8000

Documentation

https://optinist.readthedocs.io/en/latest/

Using GUI

Workflow

  • OptiNiSt allows you to make your analysis pipelines by graph style using nodes and edges on GUI. Parameters for each analysis are easily changeable.

workflow

Visualize

  • OptiNiSt allows you to visualize the analysis results with one click by plotly. It supports a variety of plotting styles.

visualize

Record

  • OptiNiSt supports you in recording and reproducing workflow pipelines in an organized manner.

record

Contributors

Proposers

Kenji Doya, Yukako Yamane OIST Neural Computation Unit

Main Developers

Shogo Akiyama, Yoshifumi Takeshima

Support Developers

Tatsuya Tanabe, Yosuke Kaneko, Syuya Saeki

References

[Suite2p] Marius Pachitariu, Carsen Stringer, Mario Dipoppa, Sylvia Schröder, L. Federico Rossi, Henry Dalgleish, Matteo Carandini, Kenneth D. Harris. "Suite2p: beyond 10,000 neurons with standard two-photon microscopy". 2017
[CaImAn] Andrea Giovannucci Is a corresponding author, Johannes Friedrich, Pat Gunn, Jérémie Kalfon, Brandon L Brown, Sue Ann Koay, Jiannis Taxidis, Farzaneh Najafi, Jeffrey L Gauthier, Pengcheng Zhou, Baljit S Khakh, David W Tank, Dmitri B Chklovskii, Eftychios A Pnevmatikakis. "CaImAn: An open source tool for scalable Calcium Imaging data Analysis". 2019
[LCCD] Tsubasa Ito, Keisuke Ota, Kanako Ueno, Yasuhiro Oisi, Chie Matsubara, Kenta Kobayashi, Masamichi Ohkura, Junichi Nakai, Masanori Murayama, Toru Aonishi, "Low computational-cost cell detection method for calcium imaging data", 2022 [PyNWB] Oliver Rübel, Andrew Tritt, Ryan Ly, Benjamin K. Dichter, Satrajit Ghosh, Lawrence Niu, Ivan Soltesz, Karel Svoboda, Loren Frank, Kristofer E. Bouchard, "The Neurodata Without Borders ecosystem for neurophysiological data science", bioRxiv 2021.03.13.435173, March 15, 2021

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

optinist-1.0.1.tar.gz (7.2 MB view details)

Uploaded Source

Built Distribution

optinist-1.0.1-py3-none-any.whl (7.3 MB view details)

Uploaded Python 3

File details

Details for the file optinist-1.0.1.tar.gz.

File metadata

  • Download URL: optinist-1.0.1.tar.gz
  • Upload date:
  • Size: 7.2 MB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.8.17

File hashes

Hashes for optinist-1.0.1.tar.gz
Algorithm Hash digest
SHA256 42b6f2af0dbb09bec24da20ba2e576b678afc6d665624bab1b1b35b4296f81f7
MD5 cf926ae46550a1ebdc9cc510c44ea94f
BLAKE2b-256 8438109ff06bbf30cddaa27a25617421bf5e89781485ec2ab1fa2c44a2e324a7

See more details on using hashes here.

File details

Details for the file optinist-1.0.1-py3-none-any.whl.

File metadata

  • Download URL: optinist-1.0.1-py3-none-any.whl
  • Upload date:
  • Size: 7.3 MB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.8.17

File hashes

Hashes for optinist-1.0.1-py3-none-any.whl
Algorithm Hash digest
SHA256 cde264a0d4d53238b7861a393595a200f51911ee006d3ec1fe976134601addaf
MD5 7e3a3358cff09597ac23127e6b62b3b7
BLAKE2b-256 a7d66543f30124b79c4a4628d7dd328a8fd5ae8fde8f240a092806d79d21777a

See more details on using hashes here.

Supported by

AWS Cloud computing and Security Sponsor Datadog Monitoring Fastly CDN Google Download Analytics Pingdom Monitoring Sentry Error logging StatusPage Status page