Skip to main content

Handles user-provided options with flexible defaults, documentation and checking

Project description

OptionsFactory

https://github.com/johnomotani/optionsfactory

OptionsFactory allows you to define a set of options, which can have (if you like): default values (which may be expressions depending on other options); documentation for each option; an allowed type or list of types; a check that the value option is on an allowed list; checks that the value of an option satisfies some tests.

Installation

OptionsFactory can be installed using pip

pip install --user optionsfactory

or conda

conda install -c conda-forge optionsfactory

Usage

Once the options are defined in an OptionsFactory, you create a particular instance of the options by passing some user settings (a dict or YAML file). The OptionsFactory uses the values passed, sets the remaining options from the default values or expressions and returns an Options object. Options are immutable so that you do not have to worry about the options being accidentally changed during execution - however, see MutableOptionsFactory if you want to be able to update the options dynamically.

For example, some simple options might be implemented like this:

from optionsfactory import OptionsFactory


class A:

    # The keyword arguments define the options and give the default values
    options_factory = OptionsFactory(a=1, b=2)

    def __init__(self, user_options = None):
        self.options = self.options_factory.create(user_options)

        # options can be accessed like a dict
        myvalue = 2 * options["a"]

        #... or as attributes
        mynewvalue = 3 + options.a

It might also be useful for some classes to allow the options to be set from keyword arguments, for example

from optionsfactory import OptionsFactory


class B:

    # The keyword arguments define the options and give the default values
    options_factory = OptionsFactory(a=1, b=2)

    def __init__(self, **kwargs):
        self.options = self.options_factory.create(kwargs)

The create() method will not alter the argument passed to it.

The options will then combine explicitly set values and defaults:

>>> b1 = B() # uses default values
>>> b1.options.a
1
>>> b1.options.b
2
>>> b2 = B(b=4) # override one of the defaults
>>> b2.options.a
1
>>> b2.options.b
4

More flexibility is available by using expressions to set the default values.

from optionsfactory import OptionsFactory


class C:

    # The keyword arguments define the options and give the default values
    options_factory = OptionsFactory(a=lambda options: options.b + 5, b=2)

    def __init__(self, **kwargs):
        self.options = self.options_factory.create(kwargs)

could be used like:

>>> c1 = C() # only default values
>>> c1.options.a
7
>>> c1.options.b
2
>>> c2 = C(a=1, b=3) # override both options, expression not used
>>> c2.options.a
1
>>> c2.options.b
>>> 3
>>> c3 = C(b=4) # User-set value of b evaluated in default expression for a
>>> c3.options.a
9
>>> c3.options.b
4

Circular dependencies in expressions will be detected and raise a ValueError.

WithMeta

WithMeta objects are used to store the defaults within OptionsFactory, and can be used to define options with extra information, e.g.

from optionsfactory import OptionsFactory, WithMeta
from optionsfactory.checks import is_positive, is_None


class D:
    options_factory = OptionsFactory(
        a=WithMeta(1, doc="option a"),
        b=WithMeta(2, value_type=int),
        c=WithMeta(3, allowed=[1, 2, 3]),
        d=WithMeta(4, check_all=is_positive),
        e=WithMeta(5, check_any=lambda x: x < 6),
        f=WithMeta(6, doc="option f", value_type=[int, float], allowed=[6, 7, 8, 9.5]),
        g=WithMeta(
            7,
            doc="option g",
            value_type=[int, None],
            check_all=[is_positive, lambda x: x < 10],
            check_any=[lambda x: x < 2, lambda x: x > 6],
        ),
    )

    def __init__(self, **kwargs):
        self.options = self.options_factory.create(kwargs)

The first argument to WithMeta gives the default value for the option, and the remaining keyword arguments are all optional. Using WithMeta the values behave just as the simple default values described above:

>>> d = D(b=12)
>>> d.options.a
1
>>> d.options["b"]
12

documentation

Documentation defined in the factory initialisation can be accessed from either the OptionsFactory or the Options instance via a doc property, that gives a dict with the documentation for each option:

>>> D.options_factory.doc["a"]  # Get doc from the factory
'option a'
>>> D.options_factory.doc["b"]  # No doc was defined for this option
>>> d = D()
>>> d.options.doc["f"]  # Get doc from the Options instance
'option f'

value_type

The value_type argument can be used to give a type or sequence of types that the option is allowed to have. Trying to set an option with a non-allowed type raises a ValueError:

>>> d2 = D(d=-2)
ValueError: The value -2 of key=d is not compatible with check_all
>>> d3 = D(f=8)
>>> d3.options.f
8
>>> d4 = D(f=9.5)
>>> d4.options.f
9.5
>>> d5 = D(f="a string")
TypeError: a string is not of type (<class 'int'>, <class 'float'>) for key=f

checking values

There are two ways of checking the values that are set for options.

allowed

The allowed keyword sets a list of allowed options. A ValueError is raised if the value being set is not in the list. allowed cannot be set if either of check_all or check_any is. Example:

>>> d6 = D(c=2)
ValueError: 2 is not in the allowed values (1, 2, 3) for key=c
>>> d7 = D(c=4)
ValueError: 4 is not in the allowed values (1, 2, 3) for key=c

check_all and check_any

These arguments can be passed a list of expressions. The expressions passed to check_all must all evaluate to True, or an ValueError is raised. At least one of the expressions passed to check_any is raised. The choice of check_any or check_all is a matter of convenience and clarity - the effect of either could be achieved with a single, sufficiently complicated, expression. They can both be set at the same time, although this probably not often useful. Neither can be set if the allowed keyword is. Example:

>>> d8 = D(d=14)
>>> d8.options.d
14
>>> d9 = D(d=-1)
ValueError: The value -1 of key=d is not compatible with check_all
>>> d10 = D(e=5)
>>> d10.options.e
5
>>> d11 = D(e=6)
ValueError: The value 6 of key=e is not compatible with check_any
>>> d12 = D(g=1)
>>> d12.options.g
1
>>> d13 = D(g=-1)
ValueError: The value -1 of key=g is not compatible with check_all
>>> d14 = D(g=5)
ValueError: The value 5 of key=g is not compatible with check_any
>>> d15 = D(g=9)
>>> d15.options.g
9
>>> d16 = D(g=10)
ValueError: The value 10 of key=g is not compatible with check_all

Default expressions

Much more flexibility is offered for default values by using expressions. These are single-argument functions (lambda expressions are often useful), which return the desired default value when passed an Options object, from which the values of other options (which may or may not be expressions themselves) can be accessed. See the class C example above. When nested options are used, expressions can also access values in subsections or parent sections of the options tree:

from optionsfactory import OptionsFactory


class E:
    options_factory = OptionsFactory(
        a=1,
        b=lambda options: options.a + options.subsection1.c + options.subsection2.e,
        subsection1=OptionsFactory(
            c=lambda options: options.parent.a + options.parent.subsection2.e,
            subsubsection=OptionsFactory(d=2),
        ),
        subsection2=OptionsFactory(
            e=lambda options: options.parent.subsection1.subsubsection.d,
        ),
    )

    def __init__(self, **kwargs):
        self.options = self.options_factory.create(kwargs)

If we initialise E with just the defaults

>>> e = E()
>>> e.options.a
1
>>> e.options.b
6
>>> e.options.subsection1.c
3
>>> e.options.subsection1.subsubsection.d
2
>>> e.options.subsection2.e
2

OptionsFactory extension for subclasses

Sometimes it can be useful to create an extended version of an OptionsFactory. For example a child class might have some extra options that are not needed in its parent class, or might require different default values. The OptionsFatory.add() method creates a new OptionsFactory from an existing one, with the keyword arguments adding to or overriding the options in the original factory. When overriding existing options, pass a value or expression to keep existing documentation and checks, or a WithMeta object to provide new documentation and checks. Example:

from optionsfactory import OptionsFactory


class Parent:
    options_factory = OptionsFactory(
        a=WithMeta(1, doc="option a"),
        b=WithMeta(2, doc="option b"),
        c=WithMeta(3, doc="option c"),
    )

    def __init__(self, **kwargs):
        self.optiotns = self.options_factory(kwargs)

class Child(Parent):
    options_factory = Parent.options_factory.add(
        # Keep 'a' unchanged
        b=4,  # Change the default value of 'b', but keep the documentation
        c=WithMeta(5, doc="child option c"),  # New default and attributes for 'c'
        d=WithMeta(6, doc="new option d"),  # New option not present in the parent
    )

and if we create a Child instance

>>> child = Child()
>>> child.options.a
1
>>> child.options.doc["a"]
'option a'
>>> child.options.b
4
>>> child.options.doc["b"]
'option b'
>>> child.options.c
5
>>> child.options.doc["c"]
'child option c'
>>> child.options.d
6
>>> child.options.doc["d"]
'new option d'

Nested options

Nested options are created by passing another OptionsFactory as a keyword argument in the OptionsFactory constructor. See the nested structure example below.

Collecting defaults

It can be useful to collect options from several factories together into a higher-level factory. For example if a class Container contains members of several classes, it might be useful for the options_factory of Container to have options for all those members, but to define the options, defaults, documentation, etc. in the particular classes. This can be done by passing OptionsFactory objects as positional arguments to the OptionsFactory constructor - see the flat structure example below.

Other Features

load from YAML

The user settings can be loaded from a YAML file (if PyYAML is available - install the optionsfactory[yaml] variant to ensure this):

>>> with open(filename) as f:
>>>     options = options_factory.create_from_yaml(f)

save to YAML

The options can also be saved to a YAML file, either the non-default values only

>>> with open(filename, 'w') as f:
>>>     options.to_yaml(f)

or all values including defaults, by passing True to the with_defaults argument

>>> with open(filename, 'w') as f:
>>>     options.to_yaml(f, True)  # saves options with default values as well

Pickling (with dill)

Options objects can be pickled using dill. This is tested. Pickling of MutableOptions objects is not currently supported.

Examples

Here are a couple of more complicated examples of the patterns that OptionsFactory was designed for.

flat structure

class A contains members of types B and C, so A.options_factory collects the default values, documentation, etc. from B.options_factory and C.options_factory by taking them as positional arguments to the constructor. Then the Options object of A is used to create the Options objects for B and C, which will have only the options relevant to themselves in, because B.options_factory and C.options_factory ignore any undefined options in the argument passed to create.

class A:
    options_factory = OptionsFactory(
        B.options_factory,
        C.options_factory,
        a_opt1 = WithMeta(1, allowed=[1, 3, 7]),
        a_opt2 = WithMeta(2, value_type=[int, float]),
    )

    def __init__(self, user_options):
        self.options = self.options_factory(user_options)
        self.b = B(self.options)
        self.c = C(self.options)

class B:
    options_factory = OptionsFactory(
        b_opt = WithMeta(3.0, checks=is_positive),
    )

    def __init__(self, options):
        self.options = self.options_factory.create(options)

class C:
    options_factory = OptionsFactory(
        c_opt = WithMeta("c-value", value_type=str)
    )

    def __init__(self, options):
        self.options = self.options_factory.create(options)

If B or C were intended to also be used as user-facing classes, which want to get their options from **kwargs, it would also be possible to have

def __init__(self, **kwargs):
    self.options = self.options_factory(kwargs)

and create the objects in A's constructor like self.b = B(**self.options).

nested structure

Similar to the flat structure above, but keeping the options for different member objects separated in different sections:

class A:
    options_factory = OptionsFactory(
        B=B.options_factory,
        C=C.options_factory,
        a_opt1 = WithMeta(1, allowed=[1, 3, 7]),
        a_opt2 = WithMeta(2, value_type=[int, float]),
    )

    def __init__(self, user_options):
        self.options = self.options_factory(user_options)
        self.b = B(self.options.B)
        self.c = C(self.options.C)

class B:
    options_factory = OptionsFactory(
        b_opt = WithMeta(3.0, checks=is_positive),
    )

    def __init__(self, options):
        self.options = options

class C:
    options_factory = OptionsFactory(
        c_opt = WithMeta("c-value", value_type=str)
    )

    def __init__(self, options):
        self.options = options

If A needs to change the default options for one of the nested sections, can use the add() method like B={"b_opt": 7.0).

Default expressions in a nested options structure can use values from sub-sections, or from parent sections, see Default expressions.

If B or C should be allowed to be created independently of a containing class like A, then you can instead define the constructor as

class B:
    options_factory = OptionsFactory(
        b_opt = WithMeta(3.0, checks=is_positive),
    )

    def __init__(self, options):
        self.options = self.options_factory(options)

This will have the same effect as the above code when called with self.b = B(self.options.B) but also allows creating a B like another_b = B({"b_opt": 4.0}). (This version will be slightly more expensive than the one above because the Options object will be converted to a dict-like iterable and a new Options created by parsing that iterable.)

global options

Not recommended, but you could create a global options object for your package/program. For example in a file mypackage.py

from optionsfactory import OptionsFactory


global_options = None


options_factory = OptionsFactory(
    opt1 = 1,
    opt2 = 2,
)


def setup(input_options):
    global global_options
    global_options = options_factory.create(input_options)

MutableOptionsFactory

MutableOptionsFactory is almost identical to OptionsFactory, but creates MutableOptions objects which can be modified after being created (it also has a create_immutable() method, equivalent to OptionsFactory.create() to create Options objects). MutableOptions behave like Options with the exception that values can be set, or reset to the default value (using del) after the object is created. Default values are re-calculated if any option is changed. Example:

>>> from options_factory import MutableOptionsFactory
>>> factory = MutableOptionsFactory(a=1, b=lambda options: 2.0*options.a)
>>> mutable_options = factory.create({"a": 3, "b": 4})
>>> mutable_options.a
3
>>> mutable_options.b
4
>>> del mutable_options.b
>>> mutable_options.b
6.0
>>> mutable_options.a = 5
>>> mutable_options.b
10.0
>>> mutable_options["a"] = 7.5
>>> mutable_options.b
15.0
>>> del mutable_options["a"]
>>> mutable_options.b
2.0
>>> mutable_options.a
1

Expressions for non-default values

Passing expressions for non-default values should work, although it has not been tested yet. Expressions cannot at present be loaded from YAML files.

Acknowledgements

Thanks to Ben Dudson and Peter Hill for discussion on options handling in the hypnotoad project and ideas in frozen_options.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

optionsfactory-1.0.11.tar.gz (41.9 kB view details)

Uploaded Source

Built Distribution

optionsfactory-1.0.11-py3-none-any.whl (25.8 kB view details)

Uploaded Python 3

File details

Details for the file optionsfactory-1.0.11.tar.gz.

File metadata

  • Download URL: optionsfactory-1.0.11.tar.gz
  • Upload date:
  • Size: 41.9 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.11.1

File hashes

Hashes for optionsfactory-1.0.11.tar.gz
Algorithm Hash digest
SHA256 dc5e316b2734ed210bcff333c800ec06d97c7cf75f41d79d7a0a7c6fa608d403
MD5 40478ffa5331f6a0943e95d734f665bc
BLAKE2b-256 0df4b0629e980389a0b5a5599e2be4de045a47097ecc82327cd67d04678f2e6b

See more details on using hashes here.

File details

Details for the file optionsfactory-1.0.11-py3-none-any.whl.

File metadata

File hashes

Hashes for optionsfactory-1.0.11-py3-none-any.whl
Algorithm Hash digest
SHA256 7f7bf0f546a2bb9f8a9cc89c866bf9c5b0bf2f985579fd8e222c4a7b31b96c3d
MD5 1110f5d9bf546531a366af4f132e50c2
BLAKE2b-256 5a24ebbb488767aa50b182d395db9eb602a625ed3637f3ab99c7885235cd0236

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page