Skip to main content

No project description provided

Project description

Optirustic Py

This is a Python package that let users import serialised data from JSON files exported with the optirustic crate. It lets you:

  • import data into Python classes for easy manipulation;
  • calculate the population hyper-volume;
  • plot 2D, 3D or parallel coordinate charts of the Pareto front.

Installation

The package can be installed from PyPi:

pip install optirustic

Usage

These are two example scripts to fetch data and plot the Pareto fronts of the optirustic example files

Python API

All Python API are available in your editor via type hints:

from optirustic import NSGA3

# Load the NSGA3 data first
data = NSGA3(r"../examples/results/DTLZ1_3obj_NSGA3_gen400.json")

# Fetch the problem data
p = data.problem
print(p.number_of_variables)
print(p.variables)
# Fetch the lower bound of X!
print(p.variables["x1"].min_value)

# Get the objective stored into the problem
print(p.objectives)
# Fetch the direction of objective f1
print(p.objectives["f1"].direction)

# Fetch the problem constraints
print(p.constraints)

# Fetch other data such as the algorithm name or generation
print(f"Algorithm name: {data.algorithm}")
print(f"Population reached generation: {data.generation}")
print(f"Algorithm took: {data.took}")
print(f"JSOn file exported on: {data.exported_on}")

# Fetch data for the first individual
print(data.individuals[0])
print(data.individuals[0].constraint_violation)
print(f"Objective values: {data.individuals[0].objectives}")
print(f"Objective f2 value is: {data.individuals[0].get_objective_value("f2")}")
print(f"Variable values: {data.individuals[0].variables}")
print(f"Additional stored data: {data.individuals[0].data}")

# Calculate the hyper-volume
print(f"Hyper-volume is: {data.hyper_volume(reference_point=[100, 100, 100])}")

Generate Pareto front chart

import matplotlib.pyplot as plt
from optirustic import NSGA2, NSGA3

# Plot a 2D charts for a 2-objective problem
NSGA2(r"../examples/results/SCH_2obj_NSGA2_gen250.json").plot()
plt.show()

# Plot a 3D charts for a 3-objective problem
NSGA3(r"../examples/results/DTLZ1_3obj_NSGA3_gen400.json").plot()
plt.show()

# Plot a parallel coordinate chart for an 8-objective problem
NSGA3(r"../examples/results/DTLZ1_8obj_NSGA3_gen750.json").plot()
plt.show()

Generate convergence chart

This template script plots the algorithm convergence by calculating the hyper-volumes at different generations:

import matplotlib.pyplot as plt
from optirustic import NSGA2

# provide the folder where optimistic exported the JSON files
# and a reference point to use in the hyper-volume calculation
NSGA2.plot_convergence(
    folder=r"../examples/results/convergence",
    reference_point=[10000, 10000]
)
plt.show()

Generate reference points

To generate, plot and inspect the reference points for the NSGA3 algorithm you can us:

One layer

import matplotlib.pyplot as plt
from optirustic import DasDarren1998

ds = DasDarren1998(number_of_objectives=3, number_of_partitions=5)
points = ds.calculate()
ds.plot(points)
plt.show()

Two layers

import matplotlib.pyplot as plt
from optirustic import DasDarren1998

two_layers = dict(
    boundary_layer=3,
    inner_layer=4,
    scaling=None,
)
ds = DasDarren1998(number_of_objectives=3, number_of_partitions=two_layers)
points = ds.calculate()
ds.plot(points)
plt.show()

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

optirustic-0.3.1.tar.gz (90.7 kB view details)

Uploaded Source

Built Distribution

optirustic-0.3.1-cp312-cp312-macosx_11_0_arm64.whl (468.8 kB view details)

Uploaded CPython 3.12 macOS 11.0+ ARM64

File details

Details for the file optirustic-0.3.1.tar.gz.

File metadata

  • Download URL: optirustic-0.3.1.tar.gz
  • Upload date:
  • Size: 90.7 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: maturin/1.7.0

File hashes

Hashes for optirustic-0.3.1.tar.gz
Algorithm Hash digest
SHA256 f817847681a037f0990f92abf96ab8fd0a3b74cc231c7a3efefa59a5daaa81c3
MD5 4c2f4963eaab70c1c631d30f66dc96c1
BLAKE2b-256 2f53964555da3345ddfae4aab70afc33eac0ab188a6913cc3a3d438230c474cb

See more details on using hashes here.

File details

Details for the file optirustic-0.3.1-cp312-cp312-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for optirustic-0.3.1-cp312-cp312-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 0448a14d220c8eb928a8891a95981883941ab17dafe16ee0431000d9219ff2db
MD5 f72b802714837cf4ddf40e1383eb7ad0
BLAKE2b-256 4ec70e8a809c4963ca38e5e00853c86a28ff3dee719f6695811b91100b2eec45

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page