Skip to main content

Integration libraries of Optuna.

Project description

Optuna-Integration

Python GitHub license Codecov Read the Docs

This package is an integration module of Optuna, an automatic Hyperparameter optimization software framework. The modules in this package provide users with extended functionalities for Optuna in combination with third-party libraries such as PyTorch, sklearn, and TensorFlow.

[!NOTE] You can find more information in our official documentations and API reference.

Installation

Optuna-Integration is available via pip and on conda.

# PyPI
$ pip install optuna-integration

# Anaconda Cloud
$ conda install -c conda-forge optuna-integration

[!IMPORTANT] As dependencies of all the modules are large and complicated, the commands above install only the common dependencies. Dependencies for each module can be installed via pip. For example, if you would like to install the dependencies of optuna_integration.botorch and optuna_integration.lightgbm, you can install them via:

$ pip install optuna-integration[botorch,lightgbm]

[!NOTE] Optuna-Integration supports from Python 3.7 to Python 3.11. Optuna Docker image is also provided at DockerHub.

Integration Modules

Here is the table of optuna-integration modules:

Third Party Library Example
BoTorch Unavailable
CatBoost CatBoostPruningCallback
Dask DaskStorage
FastAI FastAIPruningCallback
Keras KerasPruningCallback
LightGBM LightGBMPruningCallback / LightGBMTuner
MLflow MLflowCallback
MXNet Unavailable
PyTorch Distributed TorchDistributedTrial
PyTorch Ignite PyTorchIgnitePruningHandler
PyTorch Lightning PyTorchLightningPruningCallback
pycma Unavailable
SHAP Unavailable
scikit-learn OptunaSearchCV
skorch SkorchPruningCallback
TensorBoard TensorBoardCallback
tf.keras TFKerasPruningCallback
Weights & Biases WeightsAndBiasesCallback
XGBoost XGBoostPruningCallback
AllenNLP* AllenNLPPruningCallback
Chainer* ChainerPruningExtension
ChainerMN* ChainerMNStudy

[!WARNING] * shows deprecated modules and they might be removed in the future.

Communication

Contribution

Any contributions to Optuna-Integration are more than welcome!

For general guidelines how to contribute to the project, take a look at CONTRIBUTING.md.

Reference

If you use Optuna in one of your research projects, please cite our KDD paper "Optuna: A Next-generation Hyperparameter Optimization Framework":

BibTeX
@inproceedings{akiba2019optuna,
  title={{O}ptuna: A Next-Generation Hyperparameter Optimization Framework},
  author={Akiba, Takuya and Sano, Shotaro and Yanase, Toshihiko and Ohta, Takeru and Koyama, Masanori},
  booktitle={The 25th ACM SIGKDD International Conference on Knowledge Discovery \& Data Mining},
  pages={2623--2631},
  year={2019}
}

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

optuna_integration-4.0.0.tar.gz (84.1 kB view details)

Uploaded Source

Built Distribution

optuna_integration-4.0.0-py3-none-any.whl (96.9 kB view details)

Uploaded Python 3

File details

Details for the file optuna_integration-4.0.0.tar.gz.

File metadata

  • Download URL: optuna_integration-4.0.0.tar.gz
  • Upload date:
  • Size: 84.1 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? Yes
  • Uploaded via: twine/5.1.1 CPython/3.12.5

File hashes

Hashes for optuna_integration-4.0.0.tar.gz
Algorithm Hash digest
SHA256 c082ef61e30789ec6611540eba1539e511d9fff53da326dc274e1f259d9a31d1
MD5 6b35bc42a8c53800040aecbe2144ccfe
BLAKE2b-256 8e0381280da9f8a05ce134bc80f399ee1afc7a98c139f463a73317a01d15282b

See more details on using hashes here.

File details

Details for the file optuna_integration-4.0.0-py3-none-any.whl.

File metadata

File hashes

Hashes for optuna_integration-4.0.0-py3-none-any.whl
Algorithm Hash digest
SHA256 67b11b339325df33bb285e02b359923504ab0a4a9ade617c67b7115a25e70b12
MD5 eb210657cd0e6b6bb1e826d61ad42848
BLAKE2b-256 01737077a4c95833de9f76c158cb9cc6b01e5f456138c13aee1121fc72b613dd

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page