Skip to main content

Integration libraries of Optuna.

Project description

Optuna-Integration

Python pypi conda GitHub license Codecov Read the Docs

This package is an integration module of Optuna, an automatic Hyperparameter optimization software framework. The modules in this package provide users with extended functionalities for Optuna in combination with third-party libraries such as PyTorch, sklearn, and TensorFlow.

[!NOTE] You can find more information in our official documentations and API reference.

Installation

Optuna-Integration is available via pip and on conda.

# PyPI
$ pip install optuna-integration

# Anaconda Cloud
$ conda install -c conda-forge optuna-integration

[!IMPORTANT] As dependencies of all the modules are large and complicated, the commands above install only the common dependencies. Dependencies for each module can be installed via pip. For example, if you would like to install the dependencies of optuna_integration.botorch and optuna_integration.lightgbm, you can install them via:

$ pip install optuna-integration[botorch,lightgbm]

[!NOTE] Optuna-Integration supports from Python 3.8 to Python 3.12. Optuna Docker image is also provided at DockerHub.

Integration Modules

Here is the table of optuna-integration modules:

Third Party Library Example
BoTorch Unavailable
CatBoost CatBoostPruningCallback
Dask DaskStorage
FastAI FastAIPruningCallback
Keras KerasPruningCallback
LightGBM LightGBMPruningCallback / LightGBMTuner
MLflow MLflowCallback
MXNet Unavailable
PyTorch Distributed TorchDistributedTrial
PyTorch Ignite PyTorchIgnitePruningHandler
PyTorch Lightning PyTorchLightningPruningCallback
pycma Unavailable
SHAP Unavailable
scikit-learn OptunaSearchCV
skorch SkorchPruningCallback
TensorBoard TensorBoardCallback
tf.keras TFKerasPruningCallback
Weights & Biases WeightsAndBiasesCallback
XGBoost XGBoostPruningCallback
AllenNLP* AllenNLPPruningCallback
Chainer* ChainerPruningExtension
ChainerMN* ChainerMNStudy

[!WARNING] * shows deprecated modules and they might be removed in the future.

Communication

Contribution

Any contributions to Optuna-Integration are more than welcome!

For general guidelines how to contribute to the project, take a look at CONTRIBUTING.md.

Reference

If you use Optuna in one of your research projects, please cite our KDD paper "Optuna: A Next-generation Hyperparameter Optimization Framework":

BibTeX
@inproceedings{akiba2019optuna,
  title={{O}ptuna: A Next-Generation Hyperparameter Optimization Framework},
  author={Akiba, Takuya and Sano, Shotaro and Yanase, Toshihiko and Ohta, Takeru and Koyama, Masanori},
  booktitle={The 25th ACM SIGKDD International Conference on Knowledge Discovery \& Data Mining},
  pages={2623--2631},
  year={2019}
}

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

optuna_integration-4.1.0.tar.gz (85.2 kB view details)

Uploaded Source

Built Distribution

optuna_integration-4.1.0-py3-none-any.whl (97.4 kB view details)

Uploaded Python 3

File details

Details for the file optuna_integration-4.1.0.tar.gz.

File metadata

  • Download URL: optuna_integration-4.1.0.tar.gz
  • Upload date:
  • Size: 85.2 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.1.1 CPython/3.11.7

File hashes

Hashes for optuna_integration-4.1.0.tar.gz
Algorithm Hash digest
SHA256 86201502fab9c3bba8aa6ffaac0f465b0bcdb75ec75fd157eda8b96352fb3cf3
MD5 0321633b0ace8085d4427e285bde81e6
BLAKE2b-256 ab4b2290239d6f5c004872353c549d78ea2ee47496b087cc11004b89339e288e

See more details on using hashes here.

File details

Details for the file optuna_integration-4.1.0-py3-none-any.whl.

File metadata

File hashes

Hashes for optuna_integration-4.1.0-py3-none-any.whl
Algorithm Hash digest
SHA256 d6ce0ffb650f7783e6cc4a4fd2f684fb1252db441414669b14c01f65b1556a2c
MD5 ef342ddd9bb0ae684d41b150a51e92bb
BLAKE2b-256 fff1b6e9d4dbcb7d2a44c29403e3faedaece45261f179d61d62231f3ac8e6569

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page