Skip to main content

Tool to compare Oracle objects with Postgres objects

Project description

Oracle to Postgres Database Comparison Utility

This utility streamlines the process of comparing the schemas and code objects of Oracle and Postgres databases. This utility can be useful for heterogenous migrations from Oracle to Postgres or vice-versa to check whether all the objects i.e: PLSQL, tables, columns, data types, indexes, views, columns, sequences are migrated. It can leverage Google BigQuery or any Postgres database as a staging environment to load analyze metadata.

Key Features

  • Metadata Collection: Extracts comprehensive schema metadata (tables, views, functions, procedures, etc.) from Oracle and Postgres databases.
  • BigQuery Integration: Seamlessly imports collected metadata into Google BigQuery for centralized analysis.
  • Detailed Comparison Reports: Generates clear, text and html based reports highlighting differences in:
    • Object counts (tables, views, etc.)
    • Missing objects in either database
    • Discrepancies in PLSQL and plpgsql (procedures, functions)
    • Column differences
    • Index differences
    • Other customizable comparison metrics

Prerequisites

  • Oracle Database Access: Credentials for Oracle database.
  • Postgres Database Access: Credentials for Postgres database.
  • Staging Database BigQuery or Postgres database is needed to stage extracted metadata
    • BigQuery as Staging:
      • Google Cloud Project: A Google Cloud project with BigQuery enabled.
    • Postgres as Staging:
      • Postgres Database A Postgres database (maybe CloudSQL), database and username that create tables in the database.

Installation

  1. Install pip package:

    pip install oracle2postgres_schema_validator
    
  2. Set Up Environment:

    Client environment requirements:

    • python3.9
    • Shell environment (CLI) and an empty directory to run python from.
    • Network connectivity to Oracle, Postgres instances and BigQuery APIs.

    Optional: Grant required access to Oracle catalog views which are the all_* views highlighted below. If you just want to get objects of the connected user you can skip this step and set --view_type to user.

    Please replace oracle_db_user with your database user. Option 1: ```sql Grant select any dictionary to oracle_db_user;

    Option 2: ```sql GRANT SELECT ON all_objects TO <db_user>; GRANT SELECT ON all_synonyms TO <db_user>; GRANT SELECT ON all_source TO <db_user>; GRANT SELECT ON all_indexes TO <db_user>; GRANT SELECT ON all_users TO <db_user>; GRANT SELECT ON all_role_privs TO <db_user>; GRANT SELECT ON all_roles TO <db_user>; GRANT SELECT ON all_triggers TO <db_user>; GRANT SELECT ON all_tab_columns TO <db_user>; GRANT SELECT ON all_tables TO <db_user>; GRANT SELECT ON all_constraints TO <db_user>; GRANT SELECT ON all_tab_privs TO <db_user>; GRANT SELECT ON all_sys_privs TO <db_user>;

Usage

There are two ways to run ora2pg compare. The first is a single callable ora2pg compare command. The second is a more controlled way to run by running collectors, importer and reporter.

Single Command

Postgres as a staging database to load metadata

Single command example, anonymized parameters:

compare \
--oracle_host oracle_host_name_or_ip \
--oracle_user database_user \
--oracle_password database_password \
--oracle_service oracle_service_name \
--oracle_view_type <user or all> \
--postgres_host postgres_host_name_or_ip \
--postgres_database database_name \
--postgres_user database_user \
--postgres_password database_password \
--staging_postgres_connection_string "postgresql://database_user:database_password@database_password/database_name" \
--staging_schema schema_compare \
--format html

Filter by specific schema

ora2pg-compare \
--oracle_host oracle_host_name_or_ip \
--oracle_user database_user \
--oracle_password database_password \
--oracle_service oracle_service_name \
--oracle_view_type <user or all> \
--postgres_host postgres_host_name_or_ip \
--postgres_database database_name \
--postgres_user database_user \
--postgres_password database_password \
--staging_postgres_connection_string "postgresql://database_user:database_password@database_password/database_name" \
--staging_schema schema_compare \
--format html
--schemas_to_compare 'SCHEMA1, SCHEMA2, SCHEMA3' \

Staging to Bigquery

ora2pg-compare \
--oracle_host oracle_host_name_or_ip \
--oracle_user database_user \
--oracle_password database_password \
--oracle_service oracle_service_name \
--oracle_view_type <user or all> \
--postgres_host postgres_host_name_or_ip \
--postgres_database database_name \
--postgres_user database_user \
--postgres_password database_password \
--staging_project_id gcp_project_id \
--staging_dataset_id dataset_name \
--format html

Controlled execution:

1. Collect Metadata:

  • Oracle Collect:

      Execute the following command by putting your db connection settings. If you want to get all_* views use --view_type all, if you want to get user_* views use --view_type user:
          ```bash 
          oracollector --host oracle_ip_address --user db_user --password db_passwd --service oracle_service_name --view_type all
    
  • Postgres Collect: ```bash pgcollector --host pg_ip_address --database db_name --user user_name --password db_pwd

    Collectors will create a directory named "extracts" and output 2 zip files under extracts folder.

2. Import:

  • Import to BigQuery: ```bash importer --project_id your_project_id --dataset_id your_dataset_name

    You can specify an empty dataset otherwise dataset will be created if not exists.This command will unzip all the zip files under the extracts folder.

  • Import to Postgres:

      ```bash
      importer --postgres_connection_string "postgresql://db-user:db-pwd@db_ip/db_name" --schema schema_compare
    

3. Generate Report:

In order to generate comparison report you need to run "reporter". Please use "--format html" flag to generate html report. You can use --format text to print output as text on the screen.
  • BigQuery as Staging Area: ```bash reporter --project_id your_project_id --dataset_id your_dataset_name --table_name instances --format html

  • Postgres as Staging Area: ```bash reporter --db_type postgres --postgres_host your_postgres_host --postgres_port your_postgres_port --postgres_user your_postgres_user --postgres_password your_postgres_password --postgres_database your_postgres_database --schema_name schema_compare --format html

    • Filter Schemas:
      reporter --db_type postgres --postgres_host your_postgres_host --postgres_port your_postgres_port --postgres_user your_postgres_user --postgres_password your_postgres_password --postgres_database your_postgres_database --schemas_to_compare 'SCHEMA1','SCHEMA2','SCHEMA3' --format html
      

Report Output

The generated html report will be saved in the reports directory.

Contributing

Contributions are welcome! Please feel free to open issues or submit pull requests.

Clone the Repository:

git clone https://github.com/samkaradag/oracle2postgres-schema-validator


## License
This project is licensed under the Google License.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

oracle2postgres_schema_validator-0.1.10.tar.gz (26.7 kB view details)

Uploaded Source

Built Distribution

File details

Details for the file oracle2postgres_schema_validator-0.1.10.tar.gz.

File metadata

File hashes

Hashes for oracle2postgres_schema_validator-0.1.10.tar.gz
Algorithm Hash digest
SHA256 ce3978a4c715873adde15969ef5791ce9f63e6bbc62624a26b5b17031d0799a7
MD5 bd3a14c656152810088f83496979895a
BLAKE2b-256 281f419f7bb9c4a2bdfc5b1b8d9278cd97d2aa4925a3bf2ca30122b7c198a5a3

See more details on using hashes here.

File details

Details for the file oracle2postgres_schema_validator-0.1.10-py3-none-any.whl.

File metadata

File hashes

Hashes for oracle2postgres_schema_validator-0.1.10-py3-none-any.whl
Algorithm Hash digest
SHA256 a39604b80bdbfbb369c9d74626651cc7a3960866fc9b8107abcfb0a984afbac1
MD5 67ec22f78ef31846b39be81ef9d46070
BLAKE2b-256 42ad8e57be28727712434187a50defbbfaeb8fab68a863079a1ad6eea7634664

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page