Skip to main content

ORCA (Optimized Registration through Conditional Adversarial networks)

Project description

Orca-logo

ORCA: Optimized Registration through Conditional Adversarial networks

Recommended Version Monthly Downloads Daily Downloads

Requirements โœ…

For an optimal experience with ORCA, ensure the following:

  • Operating System: ORCA runs smoothly on Windows, Mac, or Linux.
  • Memory: At least 32GB of RAM ensures ORCA operates without a hitch.
  • GPU: For blazing-fast predictions, an NVIDIA GPU comes highly recommended. But if you don't have one, fret not! ORCA will still get the job done, just at a more leisurely pace. For training new models, you must have a GPU!
  • Python: Version 3.9.2 or above. We like to stay updated!

Installation Guide ๐Ÿ› ๏ธ

Navigating the installation process is a breeze. Just follow the steps below:

For Linux and MacOS ๐Ÿง๐Ÿ

  1. Create a Python environment, for example, 'orca-env'.
python3 -m venv orca-env
  1. Activate your environment.
source orca-env/bin/activate  # for Linux
source orca-env/bin/activate  # for MacOS
  1. Install ORCA.
pip install orcaz

For Windows ๐ŸชŸ

  1. Set up a Python environment, say 'orca-env'.
python -m venv orca-env
  1. Get your environment up and running.
.\orca-env\Scripts\activate
  1. Hop over to the PyTorch website and fetch the right version for your system. This step is crucial!
  2. Finish up by installing ORCA.
pip install orcaz

Usage Guide ๐Ÿ“š

Command-line tool for data folder processing :computer:

orcaz -d <path_to_patient_dir> -m <mode>

Here <path_to_patient_dir> refers to the directory containing your subject's PET and CT images. Where <mode> is the name of the mode for which we want to use the tool, from the available options.

train: Yes we can !! Orca can be used to train your own models as a generic cGAN paltform. More instructions for that to follow !

generate: This option will force orca to generate a synthetic CT from your PET data and stop before coregistration.

coreg: Option to generate synethic CT and perform the coregistration pipeline with an output of the co-registered CT. ORCA in its full glory !!

Using ORCA requires your data to be structured according to specific conventions. ORCA supports both DICOM and NIFTI formats.

Required Directory Structure ๐ŸŒณ

Please structure your dataset as follows:

EXAMPLE_Data_folder/
โ”œโ”€โ”€ S1
โ”‚   โ”œโ”€โ”€ S1_CT
โ”‚   โ”‚   โ”œโ”€โ”€ xyz_1.dcm
โ”‚   โ”‚   โ”œโ”€โ”€ xyz_2.dcm
โ”‚   โ”‚   โ”œโ”€โ”€ .
โ”‚   โ”‚   โ”œโ”€โ”€ .
โ”‚   โ”‚   โ”œโ”€โ”€ .
โ”‚   โ”‚   โ””โ”€โ”€ xyz_532.dcm
โ”‚   โ””โ”€โ”€ S1_FDG_NAC_PT
โ”‚       โ”œโ”€โ”€ xyz_1.dcm
โ”‚       โ”œโ”€โ”€ xyz_2.dcm
โ”‚       โ”œโ”€โ”€ .
โ”‚       โ”œโ”€โ”€ .
โ”‚       โ”œโ”€โ”€ .
โ”‚       โ””โ”€โ”€ xyz_532.dcm
โ”œโ”€โ”€ S2
โ”‚   โ”œโ”€โ”€ S2_CT
โ”‚   โ”‚   โ”œโ”€โ”€ xyz_1.dcm
โ”‚   โ”‚   โ”œโ”€โ”€ xyz_2.dcm
โ”‚   โ”‚   โ”œโ”€โ”€ .
โ”‚   โ”‚   โ”œโ”€โ”€ .
โ”‚   โ”‚   โ”œโ”€โ”€ .
โ”‚   โ”‚   โ””โ”€โ”€ xyz_532.dcm
โ”‚   โ””โ”€โ”€ S2_FDG_NAC_PT
โ”‚       โ”œโ”€โ”€ xyz_1.dcm
โ”‚       โ”œโ”€โ”€ xyz_2.dcm
โ”‚       โ”œโ”€โ”€ .
โ”‚       โ”œโ”€โ”€ .
โ”‚       โ”œโ”€โ”€ .
โ”‚       โ””โ”€โ”€ xyz_532.dcm
โ”œโ”€โ”€ S3
โ”‚   โ”œโ”€โ”€ S3_CT.nii
โ”‚   โ””โ”€โ”€ S3_FDG_NAC_PT.nii
โ”œโ”€โ”€ S4
โ”‚   โ”œโ”€โ”€ S4_CT.nii.gz
โ”‚   โ””โ”€โ”€ S4_FDG_NAC_PT.nii.gz

In all these cases, ORCA can be executed on the directories one by one

orcaz -d S1 -m coreg
orcaz -d S2 -m coreg
orcaz -d S3 -m coreg  

Note: If the necessary naming conventions are not followed, ORCA will not process the data in the directory.

Naming Conventions for files ๐Ÿ“

There is none! Currently orca requires the naming of the subject subfoders inlcude particular names. The patient identifier can be placed in the start of each subfolder

For instance, S1_CT and S1_FDG_NAC_PT, or S1_CT and S1_FDG_AC_PT.
S2_CT and S2_PSMA_NAC_PT.
S3_CT and S3_FACBC_NAC_PT.
S4_CT and S4_DOTA_NAC_PT.
S5_CT and S5_AGNOSTIC_NAC_PT.

Output

After successful completion, the co-registered CT is saved as dicom data in ORCA_CT_DICOM.

Intermediate images and warp files are stored within the ORCA-VXX-YYYY-MM-DD-HH-MM-SS folder

S1
โ”œโ”€โ”€ CT
โ”œโ”€โ”€ NAC_FDG_PET
โ”œโ”€โ”€ ORCA_CT_DICOM
โ”œโ”€โ”€ ORCA-V01-2023-09-28-00-02-52

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

orcaz-0.1.3.6.tar.gz (62.6 kB view details)

Uploaded Source

Built Distribution

orcaz-0.1.3.6-py3-none-any.whl (68.9 kB view details)

Uploaded Python 3

File details

Details for the file orcaz-0.1.3.6.tar.gz.

File metadata

  • Download URL: orcaz-0.1.3.6.tar.gz
  • Upload date:
  • Size: 62.6 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.1.0 CPython/3.9.19

File hashes

Hashes for orcaz-0.1.3.6.tar.gz
Algorithm Hash digest
SHA256 10e69440709dc6f6e87e97469dc43955b2ed40009509da64e27c5b1ba9fc97f5
MD5 12851b694f01066be932f73aedb12606
BLAKE2b-256 330f46a87e9f986a95d67776a8c3a9dcecf2a0c792ce0fc68bff8cd6f11e2c12

See more details on using hashes here.

File details

Details for the file orcaz-0.1.3.6-py3-none-any.whl.

File metadata

  • Download URL: orcaz-0.1.3.6-py3-none-any.whl
  • Upload date:
  • Size: 68.9 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.1.0 CPython/3.9.19

File hashes

Hashes for orcaz-0.1.3.6-py3-none-any.whl
Algorithm Hash digest
SHA256 151e712f4cc443a40c77adf9a25b716f6e06e923abf3bd073c080f77ac245631
MD5 875caf4b3f3bee95e536ed1962ef4ab0
BLAKE2b-256 e25515fcde9ee8dccdd3cd90f421507c34313445d83d506e7199ecc4171d8a13

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page