Skip to main content

A Python package for data analysis with permutation entropy and ordinal networks methods.

Project description

.. |logo1| image:: https://img.shields.io/pypi/v/ordpy?style=plastic :alt: PyPI
:target: https://pypi.org/project/ordpy/
:scale: 100%
.. |logo2| image:: https://img.shields.io/github/license/arthurpessa/ordpy?style=plastic :alt: GitHub
:target: https://github.com/arthurpessa/ordpy/blob/master/LICENSE
:scale: 100%
.. |logo3| image:: https://img.shields.io/pypi/dm/ordpy?style=plastic :alt: PyPI - Downloads
:target: https://pypi.org/project/ordpy/
:scale: 100%

|logo1| |logo2| |logo3|

ordpy: A Python Package for Data Analysis with Permutation Entropy and Ordinal Network Methods
===============================================================================================

``ordpy`` is a pure Python module [#pessa2021]_ that implements data analysis methods based
on Bandt and Pompe's [#bandt_pompe]_ symbolic encoding scheme.

.. note::

If you have used ``ordpy`` in a scientific publication, we would appreciate
citations to the following reference [#pessa2021]_:

- A. A. B. Pessa, H. V. Ribeiro, `ordpy: A Python package for data
analysis with permutation entropy and ordinal network methods
<https://arxiv.org/abs/2102.06786>`_, arXiv: 2102.06786 (2021).

.. code-block:: bibtex

@misc{pessa2021ordpy,
title = {ordpy: A Python module implementing permutation entropy and ordinal network methods for data analysis},
author = {Arthur A. B. Pessa and Haroldo V. Ribeiro},
year = {2021},
eprint = {2102.06786},
archivePrefix = {arXiv},
}

``ordpy`` implements the following data analysis methods:

- Permutation entropy for time series [#bandt_pompe]_ and images [#ribeiro_2012]_;
- Complexity-entropy plane for time series [#lopezruiz]_, [#rosso]_ and
images [#ribeiro_2012]_;
- Multiscale complexity-entropy plane for time series [#zunino2012]_ and
images [#zunino2016]_;
- Tsallis [#ribeiro2017]_ and Rényi [#jauregui]_ generalized complexity-entropy
curves for time series and images;
- Ordinal networks for time series [#small]_, [#pessa2019]_ and
images [#pessa2020]_;
- Global node entropy of ordinal networks for
time series [#McCullough]_, [#pessa2019]_ and images [#pessa2020]_.

Installing
==========

Ordpy can be installed via the command line using

.. code-block:: console

pip install ordpy

or you can directly clone its git repository:

.. code-block:: console

git clone https://github.com/arthurpessa/ordpy.git
cd ordpy
pip install -e .


Basic usage
===========

We provide a `notebook <https://github.com/arthurpessa/ordpy/blob/master/examples/ordpy.ipynb>`_
illustrating how to use ``ordpy``. This notebook reproduces all figures of our
article [#pessa2021]_. The code below shows simple applications of ``ordpy``.

.. code-block:: python

#Complexity-entropy plane for logistic map and Gaussian noise.

import numpy as np
import ordpy
from matplotlib import pylab as plt

def logistic(a=4, n=100000, x0=0.4):
x = np.zeros(n)
x[0] = x0
for i in range(n-1):
x[i+1] = a*x[i]*(1-x[i])
return(x)

time_series = [logistic(a) for a in [3.05, 3.55, 4]]
time_series += [np.random.normal(size=100000)]

HC = [ordpy.complexity_entropy(series, dx=4) for series in time_series]


f, ax = plt.subplots(figsize=(8.19, 6.3))

for HC_, label_ in zip(HC, ['Period-2 (a=3.05)',
'Period-8 (a=3.55)',
'Chaotic (a=4)',
'Gaussian noise']):
ax.scatter(*HC_, label=label_, s=100)

ax.set_xlabel('Permutation entropy, $H$')
ax.set_ylabel('Statistical complexity, $C$')

ax.legend()

.. figure:: https://raw.githubusercontent.com/arthurpessa/ordpy/master/examples/figs/sample_fig.png
:height: 489px
:width: 633px
:scale: 80 %
:align: center

.. code-block:: python

#Ordinal networks for logistic map and Gaussian noise.

import numpy as np
import igraph
import ordpy
from matplotlib import pylab as plt
from IPython.core.display import display, SVG

def logistic(a=4, n=100000, x0=0.4):
x = np.zeros(n)
x[0] = x0
for i in range(n-1):
x[i+1] = a*x[i]*(1-x[i])
return(x)

time_series = [logistic(a=4), np.random.normal(size=100000)]

vertex_list, edge_list, edge_weight_list = list(), list(), list()
for series in time_series:
v_, e_, w_ = ordpy.ordinal_network(series, dx=4)
vertex_list += [v_]
edge_list += [e_]
edge_weight_list += [w_]

def create_ig_graph(vertex_list, edge_list, edge_weight):

G = igraph.Graph(directed=True)

for v_ in vertex_list:
G.add_vertex(v_)

for [in_, out_], weight_ in zip(edge_list, edge_weight):
G.add_edge(in_, out_, weight=weight_)

return G

graphs = []

for v_, e_, w_ in zip(vertex_list, edge_list, edge_weight_list):
graphs += [create_ig_graph(v_, e_, w_)]

def igplot(g):
f = igraph.plot(g,
layout=g.layout_circle(),
bbox=(500,500),
margin=(40, 40, 40, 40),
vertex_label = [s.replace('|','') for s in g.vs['name']],
vertex_label_color='#202020',
vertex_color='#969696',
vertex_size=20,
vertex_font_size=6,
edge_width=(1 + 8*np.asarray(g.es['weight'])).tolist(),
)
return f

for graph_, label_ in zip(graphs, ['Chaotic (a=4)',
'Gaussian noise']):
print(label_)
display(SVG(igplot(graph_)._repr_svg_()))

.. figure:: https://raw.githubusercontent.com/arthurpessa/ordpy/master/examples/figs/sample_net.png
:height: 1648px
:width: 795px
:scale: 50 %
:align: center



References
==========

.. [#pessa2021] Pessa, A. A., & Ribeiro, H. V. (2021). ordpy: A Python package
for data analysis with permutation entropy and ordinal networks methods.
arXiv: 2102.06786.

.. [#bandt_pompe] Bandt, C., & Pompe, B. (2002). Permutation entropy: A Natural
Complexity Measure for Time Series. Physical Review Letters, 88, 174102.

.. [#ribeiro_2012] Ribeiro, H. V., Zunino, L., Lenzi, E. K., Santoro, P. A., &
Mendes, R. S. (2012). Complexity-Entropy Causality Plane as a Complexity
Measure for Two-Dimensional Patterns. PLOS ONE, 7, e40689.

.. [#lopezruiz] Lopez-Ruiz, R., Mancini, H. L., & Calbet, X. (1995). A Statistical
Measure of Complexity. Physics Letters A, 209, 321-326.

.. [#rosso] Rosso, O. A., Larrondo, H. A., Martin, M. T., Plastino, A., &
Fuentes, M. A. (2007). Distinguishing Noise from Chaos. Physical Review
Letters, 99, 154102.

.. [#zunino2012] Zunino, L., Soriano, M. C., & Rosso, O. A. (2012).
Distinguishing Chaotic and Stochastic Dynamics from Time Series by Using
a Multiscale Symbolic Approach. Physical Review E, 86, 046210.

.. [#zunino2016] Zunino, L., & Ribeiro, H. V. (2016). Discriminating Image
Textures with the Multiscale Two-Dimensional Complexity-Entropy Causality
Plane. Chaos, Solitons & Fractals, 91, 679-688.

.. [#ribeiro2017] Ribeiro, H. V., Jauregui, M., Zunino, L., & Lenzi, E. K.
(2017). Characterizing Time Series Via Complexity-Entropy Curves.
Physical Review E, 95, 062106.

.. [#jauregui] Jauregui, M., Zunino, L., Lenzi, E. K., Mendes, R. S., &
Ribeiro, H. V. (2018). Characterization of Time Series via Rényi
Complexity-Entropy Curves. Physica A, 498, 74-85.

.. [#small] Small, M. (2013). Complex Networks From Time Series: Capturing
Dynamics. In 2013 IEEE International Symposium on Circuits and Systems
(ISCAS2013) (pp. 2509-2512). IEEE.

.. [#pessa2019] Pessa, A. A., & Ribeiro, H. V. (2019). Characterizing Stochastic
Time Series With Ordinal Networks. Physical Review E, 100, 042304.

.. [#pessa2020] Pessa, A. A., & Ribeiro, H. V. (2020). Mapping Images Into
Ordinal Networks. Physical Review E, 102, 052312.

.. [#McCullough] McCullough, M., Small, M., Iu, H. H. C., & Stemler, T. (2017).
Multiscale Ordinal Network Analysis of Human Cardiac Dynamics.
Philosophical Transactions of the Royal Society A, 375, 20160292.

.. [#amigó] Amigó, J. M., Zambrano, S., & Sanjuán, M. A. F. (2007).
True and False Forbidden Patterns in Deterministic and Random Dynamics.
Europhysics Letters, 79, 50001.

.. [#rosso_curvas] Martin, M. T., Plastino, A., & Rosso, O. A. (2006).
Generalized Statistical Complexity Measures: Geometrical and
Analytical Properties, Physica A, 369, 439–462.


Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

ordpy-1.0.1.tar.gz (20.3 kB view details)

Uploaded Source

Built Distribution

If you're not sure about the file name format, learn more about wheel file names.

ordpy-1.0.1-py3-none-any.whl (20.0 kB view details)

Uploaded Python 3

File details

Details for the file ordpy-1.0.1.tar.gz.

File metadata

  • Download URL: ordpy-1.0.1.tar.gz
  • Upload date:
  • Size: 20.3 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.3.0 pkginfo/1.5.0.1 requests/2.24.0 setuptools/47.3.1.post20200622 requests-toolbelt/0.9.1 tqdm/4.46.1 CPython/3.7.7

File hashes

Hashes for ordpy-1.0.1.tar.gz
Algorithm Hash digest
SHA256 30bba8df82b26c965fc9ac1a744d5b8805a2185149bc628c1e4102b17c7d962f
MD5 e115204c99ab42d51c5a8d88099a1f1a
BLAKE2b-256 706701799b78d87f649aa3a347118f4c1c412acf197df9431729110359c933bc

See more details on using hashes here.

File details

Details for the file ordpy-1.0.1-py3-none-any.whl.

File metadata

  • Download URL: ordpy-1.0.1-py3-none-any.whl
  • Upload date:
  • Size: 20.0 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.3.0 pkginfo/1.5.0.1 requests/2.24.0 setuptools/47.3.1.post20200622 requests-toolbelt/0.9.1 tqdm/4.46.1 CPython/3.7.7

File hashes

Hashes for ordpy-1.0.1-py3-none-any.whl
Algorithm Hash digest
SHA256 f6784d99d43f3978c69c2d93ec0fc89848839a4a293b3c2e2531edb3cc53f849
MD5 c1a2ce859340aeb970e837e24ba42879
BLAKE2b-256 babe4f268e7b809a5caae3d7555f3642fc1660376033b449a2970c77e1b23713

See more details on using hashes here.

Supported by

AWS Cloud computing and Security Sponsor Datadog Monitoring Depot Continuous Integration Fastly CDN Google Download Analytics Pingdom Monitoring Sentry Error logging StatusPage Status page