Skip to main content

A Python package for data analysis with permutation entropy and ordinal networks methods.

Project description

.. |logo1| image:: https://img.shields.io/pypi/v/ordpy?style=plastic :alt: PyPI
:target: https://pypi.org/project/ordpy/
:scale: 100%
.. |logo2| image:: https://img.shields.io/github/license/arthurpessa/ordpy?style=plastic :alt: GitHub
:target: https://github.com/arthurpessa/ordpy/blob/master/LICENSE
:scale: 100%
.. |logo3| image:: https://img.shields.io/pypi/dm/ordpy?style=plastic :alt: PyPI - Downloads
:target: https://pypi.org/project/ordpy/
:scale: 100%
.. |logo4| image:: https://readthedocs.org/projects/ordpy/badge/?version=latest
:target: https://ordpy.readthedocs.io/?badge=latest
:alt: Documentation Status
:scale: 100%

|logo1| |logo2| |logo3| |logo4|

ordpy: A Python Package for Data Analysis with Permutation Entropy and Ordinal Network Methods
===============================================================================================

``ordpy`` is a pure Python module [#pessa2021]_ that implements data analysis methods based
on Bandt and Pompe's [#bandt_pompe]_ symbolic encoding scheme.

If you have used ``ordpy`` in a scientific publication, we would appreciate citations to the following reference [#pessa2021]_:

- A. A. B. Pessa, H. V. Ribeiro, `ordpy: A Python package for data analysis with permutation entropy and ordinal
network methods <https://arxiv.org/abs/2102.06786>`_, arXiv: 2102.06786 (2021).

.. code-block:: bibtex

@misc{pessa2021ordpy,
title = {ordpy: A Python module implementing permutation entropy and ordinal network methods for data analysis},
author = {Arthur A. B. Pessa and Haroldo V. Ribeiro},
year = {2021},
eprint = {2102.06786},
archivePrefix = {arXiv},
}

``ordpy`` implements the following data analysis methods:

- Permutation entropy for time series [#bandt_pompe]_ and images [#ribeiro_2012]_;
- Complexity-entropy plane for time series [#lopezruiz]_, [#rosso]_ and
images [#ribeiro_2012]_;
- Multiscale complexity-entropy plane for time series [#zunino2012]_ and
images [#zunino2016]_;
- Tsallis [#ribeiro2017]_ and Rényi [#jauregui]_ generalized complexity-entropy
curves for time series and images;
- Ordinal networks for time series [#small]_, [#pessa2019]_ and
images [#pessa2020]_;
- Global node entropy of ordinal networks for
time series [#McCullough]_, [#pessa2019]_ and images [#pessa2020]_.
- Missing ordinal patterns [#amigo]_ and missing transitions between ordinal
patterns [#pessa2019]_ for time series and images.

For more detailed information about the methods implemented in ``ordpy``, please
consult its `documentation <https://arthurpessa.github.io/ordpy/_build/html/index.html>`_.

Installing
==========

Ordpy can be installed via the command line using

.. code-block:: console

pip install ordpy

or you can directly clone its git repository:

.. code-block:: console

git clone https://github.com/arthurpessa/ordpy.git
cd ordpy
pip install -e .


Basic usage
===========

We provide a `notebook <https://github.com/arthurpessa/ordpy/blob/master/examples/ordpy.ipynb>`_
illustrating how to use ``ordpy``. This notebook reproduces all figures of our
article [#pessa2021]_. The code below shows simple applications of ``ordpy``.

.. code-block:: python

#Complexity-entropy plane for logistic map and Gaussian noise.

import numpy as np
import ordpy
from matplotlib import pylab as plt

def logistic(a=4, n=100000, x0=0.4):
x = np.zeros(n)
x[0] = x0
for i in range(n-1):
x[i+1] = a*x[i]*(1-x[i])
return(x)

time_series = [logistic(a) for a in [3.05, 3.55, 4]]
time_series += [np.random.normal(size=100000)]

HC = [ordpy.complexity_entropy(series, dx=4) for series in time_series]


f, ax = plt.subplots(figsize=(8.19, 6.3))

for HC_, label_ in zip(HC, ['Period-2 (a=3.05)',
'Period-8 (a=3.55)',
'Chaotic (a=4)',
'Gaussian noise']):
ax.scatter(*HC_, label=label_, s=100)

ax.set_xlabel('Permutation entropy, $H$')
ax.set_ylabel('Statistical complexity, $C$')

ax.legend()

.. figure:: https://raw.githubusercontent.com/arthurpessa/ordpy/master/examples/figs/sample_fig.png
:height: 489px
:width: 633px
:scale: 80 %
:align: center

.. code-block:: python

#Ordinal networks for logistic map and Gaussian noise.

import numpy as np
import igraph
import ordpy
from matplotlib import pylab as plt
from IPython.core.display import display, SVG

def logistic(a=4, n=100000, x0=0.4):
x = np.zeros(n)
x[0] = x0
for i in range(n-1):
x[i+1] = a*x[i]*(1-x[i])
return(x)

time_series = [logistic(a=4), np.random.normal(size=100000)]

vertex_list, edge_list, edge_weight_list = list(), list(), list()
for series in time_series:
v_, e_, w_ = ordpy.ordinal_network(series, dx=4)
vertex_list += [v_]
edge_list += [e_]
edge_weight_list += [w_]

def create_ig_graph(vertex_list, edge_list, edge_weight):

G = igraph.Graph(directed=True)

for v_ in vertex_list:
G.add_vertex(v_)

for [in_, out_], weight_ in zip(edge_list, edge_weight):
G.add_edge(in_, out_, weight=weight_)

return G

graphs = []

for v_, e_, w_ in zip(vertex_list, edge_list, edge_weight_list):
graphs += [create_ig_graph(v_, e_, w_)]

def igplot(g):
f = igraph.plot(g,
layout=g.layout_circle(),
bbox=(500,500),
margin=(40, 40, 40, 40),
vertex_label = [s.replace('|','') for s in g.vs['name']],
vertex_label_color='#202020',
vertex_color='#969696',
vertex_size=20,
vertex_font_size=6,
edge_width=(1 + 8*np.asarray(g.es['weight'])).tolist(),
)
return f

for graph_, label_ in zip(graphs, ['Chaotic (a=4)',
'Gaussian noise']):
print(label_)
display(SVG(igplot(graph_)._repr_svg_()))

.. figure:: https://raw.githubusercontent.com/arthurpessa/ordpy/master/examples/figs/sample_net.png
:height: 1648px
:width: 795px
:scale: 50 %
:align: center

Contributing
============

Pull requests addressing errors or adding new functionalities are always welcome.

References
==========

.. [#pessa2021] Pessa, A. A., & Ribeiro, H. V. (2021). ordpy: A Python package
for data analysis with permutation entropy and ordinal networks methods.
arXiv: 2102.06786.

.. [#bandt_pompe] Bandt, C., & Pompe, B. (2002). Permutation entropy: A Natural
Complexity Measure for Time Series. Physical Review Letters, 88, 174102.

.. [#ribeiro_2012] Ribeiro, H. V., Zunino, L., Lenzi, E. K., Santoro, P. A., &
Mendes, R. S. (2012). Complexity-Entropy Causality Plane as a Complexity
Measure for Two-Dimensional Patterns. PLOS ONE, 7, e40689.

.. [#lopezruiz] Lopez-Ruiz, R., Mancini, H. L., & Calbet, X. (1995). A Statistical
Measure of Complexity. Physics Letters A, 209, 321-326.

.. [#rosso] Rosso, O. A., Larrondo, H. A., Martin, M. T., Plastino, A., &
Fuentes, M. A. (2007). Distinguishing Noise from Chaos. Physical Review
Letters, 99, 154102.

.. [#zunino2012] Zunino, L., Soriano, M. C., & Rosso, O. A. (2012).
Distinguishing Chaotic and Stochastic Dynamics from Time Series by Using
a Multiscale Symbolic Approach. Physical Review E, 86, 046210.

.. [#zunino2016] Zunino, L., & Ribeiro, H. V. (2016). Discriminating Image
Textures with the Multiscale Two-Dimensional Complexity-Entropy Causality
Plane. Chaos, Solitons & Fractals, 91, 679-688.

.. [#ribeiro2017] Ribeiro, H. V., Jauregui, M., Zunino, L., & Lenzi, E. K.
(2017). Characterizing Time Series Via Complexity-Entropy Curves.
Physical Review E, 95, 062106.

.. [#jauregui] Jauregui, M., Zunino, L., Lenzi, E. K., Mendes, R. S., &
Ribeiro, H. V. (2018). Characterization of Time Series via Rényi
Complexity-Entropy Curves. Physica A, 498, 74-85.

.. [#small] Small, M. (2013). Complex Networks From Time Series: Capturing
Dynamics. In 2013 IEEE International Symposium on Circuits and Systems
(ISCAS2013) (pp. 2509-2512). IEEE.

.. [#pessa2019] Pessa, A. A., & Ribeiro, H. V. (2019). Characterizing Stochastic
Time Series With Ordinal Networks. Physical Review E, 100, 042304.

.. [#pessa2020] Pessa, A. A., & Ribeiro, H. V. (2020). Mapping Images Into
Ordinal Networks. Physical Review E, 102, 052312.

.. [#McCullough] McCullough, M., Small, M., Iu, H. H. C., & Stemler, T. (2017).
Multiscale Ordinal Network Analysis of Human Cardiac Dynamics.
Philosophical Transactions of the Royal Society A, 375, 20160292.

.. [#amigo] Amigó, J. M., Zambrano, S., & Sanjuán, M. A. F. (2007).
True and False Forbidden Patterns in Deterministic and Random Dynamics.
Europhysics Letters, 79, 50001.

.. [#rosso_curvas] Martin, M. T., Plastino, A., & Rosso, O. A. (2006).
Generalized Statistical Complexity Measures: Geometrical and
Analytical Properties, Physica A, 369, 439–462.


Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

ordpy-1.0.4.tar.gz (21.2 kB view details)

Uploaded Source

Built Distribution

If you're not sure about the file name format, learn more about wheel file names.

ordpy-1.0.4-py3-none-any.whl (20.1 kB view details)

Uploaded Python 3

File details

Details for the file ordpy-1.0.4.tar.gz.

File metadata

  • Download URL: ordpy-1.0.4.tar.gz
  • Upload date:
  • Size: 21.2 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.3.0 pkginfo/1.7.0 requests/2.25.1 setuptools/52.0.0.post20210125 requests-toolbelt/0.9.1 tqdm/4.59.0 CPython/3.7.7

File hashes

Hashes for ordpy-1.0.4.tar.gz
Algorithm Hash digest
SHA256 2c247accf065a51c7d5309502954fe2d09da74b8b33f505a4b63b484f5e4da00
MD5 e07759198e62943c632f4dc577eb35d8
BLAKE2b-256 b6014c2f7805db87854060424d3eee053bf734ebc31f392a4729ac4212e87bdf

See more details on using hashes here.

File details

Details for the file ordpy-1.0.4-py3-none-any.whl.

File metadata

  • Download URL: ordpy-1.0.4-py3-none-any.whl
  • Upload date:
  • Size: 20.1 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.3.0 pkginfo/1.7.0 requests/2.25.1 setuptools/52.0.0.post20210125 requests-toolbelt/0.9.1 tqdm/4.59.0 CPython/3.7.7

File hashes

Hashes for ordpy-1.0.4-py3-none-any.whl
Algorithm Hash digest
SHA256 464e73835e4bfa82f45811742d94c60cecb2e297cd8f7725f50641bcc9464d7d
MD5 9fc7c66592faa24be8af91b216afb487
BLAKE2b-256 6be1e20f00c1949c29bb4b301bd28996866cd082ad4ae75c005a1cb9f30333ff

See more details on using hashes here.

Supported by

AWS Cloud computing and Security Sponsor Datadog Monitoring Depot Continuous Integration Fastly CDN Google Download Analytics Pingdom Monitoring Sentry Error logging StatusPage Status page