Skip to main content

This program is designed to perform a genetic algorithm global optimisation for nanoclusters.

Project description

The Otago Research Genetic Algorithm for Nanoclusters, Including Structural Methods and Similarity (Organisms) Program: A Genetic Algorithm for Nanoclusters

Citation PyPI - Python Version GitHub release (latest by date) PyPI Conda Documentation Binder Licence LGTM Grade

Authors: Geoffrey R. Weal and Dr. Anna L. Garden (University of Otago, Dunedin, New Zealand)

Group page: https://blogs.otago.ac.nz/annagarden/

Page to cite with work from: Development of a Structural Comparison Method to Promote Exploration of the Potential Energy Surface in the Global Optimisation of Nanoclusters; Geoffrey R. Weal, Samantha M. McIntyre, and Anna L. Garden; JCIM; in submission stage.

What is Organisms

The Otago Research Genetic Algorithm for Nanoclusters, Including Structural Methods and Similarity (Organisms) program is designed to perform a genetic algorithm global optimisation for nanoclusters. It has been designed with inspiration from the Birmingham Cluster Genetic Algorithm and the Birmingham Parallel Genetic Algorithm from the Roy Johnston Group (see J. B. A. Davis, A. Shayeghi, S. L. Horswell, R. L. Johnston, Nanoscale, 2015,7, 14032 (https://doi.org/10.1039/C5NR03774C or link to pdf here), R. L. Johnston,Dalton Trans., 2003, 4193–4207 (https://doi.org/10.1039/B305686D or link to pdf here

Try Organisms before you Clone/Pip/Conda (on Binder/Jupter Notebooks)!

If you are new to the Organisms program, it is recommended try it out by running Organisms live on our interactive Jupyter+Binder page before you download it. On Jupyter+Binder, you can play around with the Organisms program on the web. You do not need to install anything to try Organisms out on Jupyter+Binder.

Click the Binder button below to try Organisms out on the web! (The Binder page may load quickly or may take 1 or 2 minutes to load)

Binder

Have fun!

What does Organisms have to offer to Nanocluster Global Optimisation

This program has been designed to learn about how to improve the efficiency of the genetic algorithm in locating the global minimum. This genetic algorithm implements various predation operators, fitness operators, and epoch methods. A structural comparison method based on the common neighbour analysis (CNA) has been implemented into a SCM-based predation operator and ''structure + energy'' fitness operator.

The SCM-based predation operator compares the structures of clusters together and excludes clusters from the population that are too similar to each other. This can be tuned to exclude clusters that are structurally very similar to each other, to exclude clusters that are structurally different but of the same motif, or set to a custom structural exclusion setting.

The ''structure + energy'' fitness operator is designed to include a portion of structural diversity into the fitness value as well as energy. The goal of this fitness operator is to guide the genetic algorithm around to unexplored areas of a cluster's potential energy surface.

This genetic algorithm has been designed with Atomic Simulation Environment (ASE, https://wiki.fysik.dtu.dk/ase/). with the use of ASE, clusters that are generated using the genetic algorithm are placed into databases that you can assess through the terminal or via a website. See more about how to the ASE database works in the link here.

The CNA has been implemented using ASAP3 (As Soon As Possible). See https://wiki.fysik.dtu.dk/asap for more information about ASAP3.

Installation

It is recommended to read the installation page before using the Organisms program.

organisms.readthedocs.io/en/latest/Installation.html

Note that you can install Organisms through pip3 and conda.

Where can I find the documentation for Organisms

All the information about this program is found online at organisms.readthedocs.io/en/latest/. Click the button below to also see the documentation:

Documentation

About

Python PyPI - Python Version
Repositories GitHub release (latest by date) PyPI Conda
Documentation Documentation Binder
Citation Citation
Tests LGTM Grade
License Licence
Authors Geoffrey R. Weal, Dr. Anna L. Garden
Group Website https://blogs.otago.ac.nz/annagarden/

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

Organisms-3.2.7.1.tar.gz (161.5 kB view details)

Uploaded Source

Built Distribution

Organisms-3.2.7.1-py3-none-any.whl (255.2 kB view details)

Uploaded Python 3

File details

Details for the file Organisms-3.2.7.1.tar.gz.

File metadata

  • Download URL: Organisms-3.2.7.1.tar.gz
  • Upload date:
  • Size: 161.5 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.1 importlib_metadata/3.7.3 pkginfo/1.7.0 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.59.0 CPython/3.9.2

File hashes

Hashes for Organisms-3.2.7.1.tar.gz
Algorithm Hash digest
SHA256 2f6f2f2ab712035a014726a237866a21188ec119898da458705304366e417f51
MD5 6d942dc9de9f47867769668a252c1982
BLAKE2b-256 c42c5d00ca4ba7e773935b299dd6400773c0a19bd50950141fff1fb64b031b0f

See more details on using hashes here.

File details

Details for the file Organisms-3.2.7.1-py3-none-any.whl.

File metadata

  • Download URL: Organisms-3.2.7.1-py3-none-any.whl
  • Upload date:
  • Size: 255.2 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.1 importlib_metadata/3.7.3 pkginfo/1.7.0 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.59.0 CPython/3.9.2

File hashes

Hashes for Organisms-3.2.7.1-py3-none-any.whl
Algorithm Hash digest
SHA256 56d154abef64a8404ad82da66c94b35d0927514a5db379b7cbadb0646f859f11
MD5 4619362ee9af3c9fcb7be62ebf4a98a0
BLAKE2b-256 acd3f9b2abb77a1cb1ace608da0c436b9fe88fb4ba7d3d188119a4bbb8b62b4b

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page