Skip to main content

A single-module library for [describe functionality briefly]

Project description

Orient Express

A library to accelerate model deployments to Vertex AI directly from colab notebooks

train-resized

Installation

pip install orient_express

Example

Train Model

Train a regular model. In the example below, it's xgboost model, trained on the Titanic dataset.

# Import necessary libraries
import xgboost as xgb
from sklearn.model_selection import train_test_split
from sklearn.metrics import accuracy_score, confusion_matrix
from sklearn.pipeline import Pipeline
from sklearn.compose import ColumnTransformer
from sklearn.preprocessing import StandardScaler, OneHotEncoder
from sklearn.impute import SimpleImputer

# Load the Titanic dataset
data = sns.load_dataset('titanic').dropna(subset=['survived'])  # Dropping rows with missing target labels

# Select features and target
X = data[['pclass', 'sex', 'age', 'sibsp', 'parch', 'fare', 'embarked']]
y = data['survived']

# Define preprocessing for numeric columns (impute missing values and scale features)
numeric_features = ['age', 'fare', 'sibsp', 'parch']
numeric_transformer = Pipeline(steps=[
    ('imputer', SimpleImputer(strategy='median')),
    ('scaler', StandardScaler())
])

# Define preprocessing for categorical columns (impute missing values and one-hot encode)
categorical_features = ['pclass', 'sex', 'embarked']
categorical_transformer = Pipeline(steps=[
    ('imputer', SimpleImputer(strategy='most_frequent')),
    ('onehot', OneHotEncoder(handle_unknown='ignore'))
])

# Combine preprocessing steps
preprocessor = ColumnTransformer(
    transformers=[
        ('num', numeric_transformer, numeric_features),
        ('cat', categorical_transformer, categorical_features)
    ])

# Create a pipeline that first transforms the data, then trains an XGBoost model
model = Pipeline(steps=[
    ('preprocessor', preprocessor),
    ('classifier', xgb.XGBClassifier(use_label_encoder=False, eval_metric='logloss'))
])

# Split the dataset into training and test sets
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)

# Train the model
model.fit(X_train, y_train)

Upload Model To Model Registry

model_wrapper  = ModelExpress(model=model,
                             project_name='my-project-name',
                             region='us-central1',
                             bucket_name='my-artifacts-bucket',
                             model_name='titanic')
model_wrapper.upload()

Local Inference (Without Online Prediction Endpoint)

The following code will download the last model from the model registry and run the inference locally.

# create input dataframe
titanic_data = {
    "pclass": [1],          # Passenger class (1st, 2nd, 3rd)
    "sex": ["female"],      # Gender
    "age": [29],            # Age
    "sibsp": [0],           # Number of siblings/spouses aboard
    "parch": [0],           # Number of parents/children aboard
    "fare": [100.0],        # Ticket fare
    "embarked": ["S"]       # Port of Embarkation (C = Cherbourg, Q = Queenstown, S = Southampton)
}
input_df = pd.DataFrame(titanic_data)

# init the model wrapper
model_wrapper  = ModelExpress(project_name='my-project-name',
                             region='us-central1',
                             model_name='titanic')

# Run inference locally
# It will download the most recent version from the model registry automatically
model_wrapper.local_predict(input_df)

Pin Model Version

In many cases, the pipeline should be pinned to a specific model version so the model can only be updated explicitly. Just pass a model_version parameter when instantiating the ModelExpress wrapper.

# init the model wrapper
model_wrapper  = ModelExpress(project_name='my-project-name',
                             region='us-central1',
                             model_name='titanic',
                             model_version=11)

Remote Inference (With Online Prediction Endpoint)

Make sure the model is deployed:

model_wrapper  = ModelExpress(model=model,
                             project_name='my-project-name',
                             region='us-central1',
                             bucket_name='my-artifacts-bucket',
                             model_name='titanic')

# upload the version to the registry and deploy it to the endpoint
model_wrapper.deploy()

Run inference with remote_predict method. It will make a remote call to the endpoint without fetching the model locally.

titanic_data = {
    "pclass": [1],             # Passenger class (1st, 2nd, 3rd)
    "sex": ["female"],         # Gender
    "age": [29],               # Age
    "sibsp": [0],              # Number of siblings/spouses aboard
    "parch": [0],              # Number of parents/children aboard
    "fare": [100.0],           # Ticket fare
    "embarked": ["S"]          # Port of Embarkation (C = Cherbourg, Q = Queenstown, S = Southampton)
}
df = pd.DataFrame(titanic_data)

model_wrapper.remote_predict(df)

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

orient_express-0.1.1.tar.gz (3.1 kB view details)

Uploaded Source

Built Distribution

orient_express-0.1.1-py3-none-any.whl (3.0 kB view details)

Uploaded Python 3

File details

Details for the file orient_express-0.1.1.tar.gz.

File metadata

  • Download URL: orient_express-0.1.1.tar.gz
  • Upload date:
  • Size: 3.1 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.1.1 CPython/3.12.7

File hashes

Hashes for orient_express-0.1.1.tar.gz
Algorithm Hash digest
SHA256 390be68b4433ac16778ba32d1455528a1ca817e368e9cf571a805fd8e3360c0b
MD5 4b2b1e33e5005951ae39eac92f63b521
BLAKE2b-256 b29b0da74b6c88dc04079327715a6b6c12cdb71405f409e51f192007d54447c3

See more details on using hashes here.

File details

Details for the file orient_express-0.1.1-py3-none-any.whl.

File metadata

File hashes

Hashes for orient_express-0.1.1-py3-none-any.whl
Algorithm Hash digest
SHA256 831c7dee2b9fb9a42b350099f86c4a143ceeecd6c9c17d4a92cdd3306b89b97b
MD5 1b80b7ec1c5a820d7e3dd34ad9cb117d
BLAKE2b-256 07411c9aaace4f1fa7dc141c9a6c25116acf5adf8ca0d985ece07276dfe44fb9

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page