Skip to main content

SDK for origo

Project description

Configuration

When calling any classes interacting with the Origo API and there are no Config params passed to the constructor, a config object will be automaticly created for you based on environment variables

Environment variables

Default, will pick up configuration from current environment. The credentials is resolved automatically if you do not set a specific Auth config, in the following order:

  1. Client Credentials: If you have added client_id / client_secret to the config. Or if you use the environment variable equivalent: ORIGO_CLIENT_ID / ORIGO_CLIENT_SECRET.
  2. Username And Password: If you have added username / password to the config. Or if you use the environment variable equivalent: ORIGO_USERNAME / ORIGO_PASSWORD.
# keycloak user
export ORIGO_USERNAME=my-user

# keycloak password for ORIGO_USERNAME
export ORIGO_PASSWORD=my-password

# keycloak client
export ORIGO_CLIENT_ID=my-machine-client

# keycloak secret for ORIGO_CLIENT_ID
export ORIGO_CLIENT_SECRET=some-generated-secure-string


# overrides default environment (dev), but will be trumped by --env=<environment> on the commandline
export ORIGO_ENVIRONMENT=dev|prod

# If you are sending events and have been assigned a API key
export ORIGO_API_KEY=your-api-key

Getting Credentials:

username/password are synced with Oslo municipalities Active Directory so any user with an association can use their personal account to access the SDK.

For client credentials please contact the data platform team. dataplattform[at]oslo.kommune.no

TODO: Named profiles

If environment variables are not available, the system will try to load from a default profile: Located in ~/.origo/configuration

Usage

Upload data

When uploading data you need to refer to an existing dataset that you own, a version and an edition. If these are non existent then you can create them yourself. This can be achieved using the sdk, or you can use our command line interface.

from origo.data.upload import Upload
from origo.config import Config

origo_config = Config()

# If necessary you can override default values
origo_config.config["cacheCredentials"] = False

data_uploader = Upload(config=origo_config)

# Upload file 'data.json' to dataset-id/version/edition
dataset_id = "your-dataset-id"
version = "version"
edition = "20200115T130439"

filename = "data.json"

# Note! filename must be pointing to an existing file on your disk
upload_success = data_uploader.upload(filename, dataset_id, version, edition)

Sending events

Before you can start sending events you need to have defined a dataset and a version. This can be achieved using the sdk, or you can use our command line interface. You not need to define an edition in order to send events. However you need to set up an event-stream. As for now you have to contact Team Dataplattform at Origo in order to set up an event-stream.

from origo.event.post_event import PostEvent
from origo.config import Config

origo_config = Config()

# If necessary you can override default config values
origo_config.config["cacheCredentials"] = True

event_poster = PostEvent(config=origo_config)

dataset_id = "some-dataset-id"
version = "1"
event = {"foo": "bar"}

res = event_poster.post_event(event, dataset_id, version)
# res:
# {'message': 'Ok'}

# Method also supports list of dictionaries
event_list = [{"foo": "bar"}, {"foo": "bar"}]

res2 = event_poster.post_event(event_list, dataset_id, version)
# res2:
# {'message': 'Ok'}

Create a new dataset with version and edition

from origo.data.dataset import Dataset
from origo.config import Config

origo_config = Config()

# If necessary you can override default values
origo_config.config["cacheCredentials"] = False

# Create a new dataset
dataset = Dataset(config=origo_config)

dataset_metadata = {
    "title": "Precise Descriptive Title",
    "description": "Describe your dataset here",
    "keywords": ["some-keyword"],
    "accessRights": "public",
    "confidentiality": "green",
    "objective": "Exemplify how to create a new dataset",
    "contactPoint": {
        "name": "Your name",
        "email": "your_email@domain.com",
        "phone": "999555111"
    },
    "publisher": "name of organization or person responsible for publishing the data",
    "processing_stage": "raw"
}

new_dataset = dataset.create_dataset(data=dataset_metadata)

# new_dataset:
# { 'Id': 'precise-descriptive-title',
#   'Type': 'Dataset',
#   '_links': {'self': {'href': '/datasets/precise-descriptive-title'}},
#   'accessRights': 'public',
#   'confidentiality': 'green',
#   'contactPoint': { 'email': 'your_email@domain.com',
#                     'name': 'Your name',
#                     'phone': '999555111'},
#   'description': 'Describe your dataset here',
#   'keywords': ['some-keyword'],
#   'objective': 'Exemplify how to create a new dataset',
#   'processing_stage': 'raw',
#   'publisher': 'name of organization or person responsible for publishing the '
#                'data',
#   'title': 'Precise Descriptive Title'}


# create version for new dataset:
version_data = {"version": "1"}
new_version = dataset.create_version(new_dataset["Id"], data=version_data)

# new_version:
# { 'Id': 'precise-descriptive-title/1',
#   'Type': 'Version',
#   '_links': { 'self': { 'href': '/datasets/precise-descriptive-title/versions/1'}},
#   'version': '1'}

# create edition for new_dataset/new_version:
import datetime

# Note! edition-field must be ISO 8601 with utc offset
edition_data = {
    "edition": str(datetime.datetime.utcnow().replace(tzinfo=datetime.timezone.utc).isoformat()),
    "description": "My edition description",
    "startTime": "2019-01-01",
    "endTime": "2019-12-31"
}
new_edition = dataset.create_edition(new_dataset["Id"], new_version["version"], data=edition_data)

# new_edition
# { 'Id': 'precise-descriptive-title/1/20200115T130439',
#   'Type': 'Edition',
#   '_links': { 'self': { 'href': '/datasets/precise-descriptive-title/versions/1/editions/20200115T130439'}},
#   'description': 'My edition description',
#   'edition': '2020-01-15T13:04:39.041778+00:00',
#   'endTime': '2019-12-31',
#   'startTime': '2019-01-01'}

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

origo-sdk-python-0.0.15.tar.gz (16.6 kB view details)

Uploaded Source

Built Distribution

origo_sdk_python-0.0.15-py3-none-any.whl (26.3 kB view details)

Uploaded Python 3

File details

Details for the file origo-sdk-python-0.0.15.tar.gz.

File metadata

  • Download URL: origo-sdk-python-0.0.15.tar.gz
  • Upload date:
  • Size: 16.6 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.1.1 pkginfo/1.5.0.1 requests/2.22.0 setuptools/39.0.1 requests-toolbelt/0.9.1 tqdm/4.40.0 CPython/3.7.1

File hashes

Hashes for origo-sdk-python-0.0.15.tar.gz
Algorithm Hash digest
SHA256 be16e370960d277d7db34eb12718881b3f286d54761723db8c8d7d4e966690ba
MD5 0076a6f35e20632f7c1fc25e23ad2691
BLAKE2b-256 56e8d7274c43ebcb51e9e60ec67a082164737fbe0aa7e9b2874041db845b0df1

See more details on using hashes here.

File details

Details for the file origo_sdk_python-0.0.15-py3-none-any.whl.

File metadata

  • Download URL: origo_sdk_python-0.0.15-py3-none-any.whl
  • Upload date:
  • Size: 26.3 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.1.1 pkginfo/1.5.0.1 requests/2.22.0 setuptools/39.0.1 requests-toolbelt/0.9.1 tqdm/4.40.0 CPython/3.7.1

File hashes

Hashes for origo_sdk_python-0.0.15-py3-none-any.whl
Algorithm Hash digest
SHA256 da249dc4ddb3bf2a233c155a34a205dd2c8aa76426bf592b8c71004111a7c777
MD5 0d1678879831e5cf14599359fb929855
BLAKE2b-256 12570c5949d604f9ab919a9b2270c73d5d8c4451efa7fea92ae826e1df0c5292

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page