Skip to main content

Fast, correct Python JSON library supporting dataclasses, datetimes, and numpy

Project description

orjson-pydantic

This is a (maintained) fork of orjson that adds serialization of pydantic objects.

orjson is a fast, correct JSON library for Python. It benchmarks as the fastest Python library for JSON and is more correct than the standard json library or other third-party libraries. It serializes dataclass, datetime, numpy, and UUID instances natively.

Its features and drawbacks compared to other Python JSON libraries:

  • serializes dataclass instances 40-50x as fast as other libraries
  • serializes datetime, date, and time instances to RFC 3339 format, e.g., "1970-01-01T00:00:00+00:00"
  • serializes numpy.ndarray instances 4-12x as fast with 0.3x the memory usage of other libraries
  • pretty prints 10x to 20x as fast as the standard library
  • serializes to bytes rather than str, i.e., is not a drop-in replacement
  • serializes str without escaping unicode to ASCII, e.g., "好" rather than "\\u597d"
  • serializes float 10x as fast and deserializes twice as fast as other libraries
  • serializes subclasses of str, int, list, and dict natively, requiring default to specify how to serialize others
  • serializes arbitrary types using a default hook
  • has strict UTF-8 conformance, more correct than the standard library
  • has strict JSON conformance in not supporting Nan/Infinity/-Infinity
  • has an option for strict JSON conformance on 53-bit integers with default support for 64-bit
  • does not provide load() or dump() functions for reading from/writing to file-like objects

orjson supports CPython 3.7, 3.8, 3.9, and 3.10. It distributes x86_64/amd64, aarch64/armv8, and arm7 wheels for Linux, amd64 and aarch64 wheels for macOS, and amd64 wheels for Windows. orjson does not support PyPy. Releases follow semantic versioning and serializing a new object type without an opt-in flag is considered a breaking change.

orjson is licensed under both the Apache 2.0 and MIT licenses. The repository and issue tracker is github.com/ijl/orjson, and patches may be submitted there. There is a CHANGELOG available in the repository.

  1. Usage
    1. Install
    2. Quickstart
    3. Migrating
    4. Serialize
      1. default
      2. option
    5. Deserialize
  2. Types
    1. dataclass
    2. datetime
    3. enum
    4. float
    5. int
    6. numpy
    7. str
    8. uuid
    9. pydantic
  3. Testing
  4. Performance
    1. Latency
    2. Memory
    3. Reproducing
  5. Questions
  6. Packaging
  7. License

Usage

Install

To install a wheel from PyPI:

pip install --upgrade "pip>=20.3" # manylinux_x_y, universal2 wheel support
pip install --upgrade orjson-pydantic

To build a wheel, see packaging.

Quickstart

This is an example of serializing, with options specified, and deserializing:

>>> import orjson_pydantic, datetime, numpy
>>> data = {
    "type": "job",
    "created_at": datetime.datetime(1970, 1, 1),
    "status": "🆗",
    "payload": numpy.array([[1, 2], [3, 4]]),
}
>>> orjson_pydantic.dumps(data, option=orjson_pydantic.OPT_NAIVE_UTC | orjson_pydantic.OPT_SERIALIZE_NUMPY)
b'{"type":"job","created_at":"1970-01-01T00:00:00+00:00","status":"\xf0\x9f\x86\x97","payload":[[1,2],[3,4]]}'
>>> orjson_pydantic.loads(_)
{'type': 'job', 'created_at': '1970-01-01T00:00:00+00:00', 'status': '🆗', 'payload': [[1, 2], [3, 4]]}

Migrating

orjson version 3 serializes more types than version 2. Subclasses of str, int, dict, and list are now serialized. This is faster and more similar to the standard library. It can be disabled with orjson_pydantic.OPT_PASSTHROUGH_SUBCLASS.dataclasses.dataclass instances are now serialized by default and cannot be customized in a default function unless option=orjson_pydantic.OPT_PASSTHROUGH_DATACLASS is specified. uuid.UUID instances are serialized by default. For any type that is now serialized, implementations in a default function and options enabling them can be removed but do not need to be. There was no change in deserialization.

To migrate from the standard library, the largest difference is that orjson_pydantic.dumps returns bytes and json.dumps returns a str. Users with dict objects using non-str keys should specify option=orjson_pydantic.OPT_NON_STR_KEYS. sort_keys is replaced by option=orjson_pydantic.OPT_SORT_KEYS. indent is replaced by option=orjson_pydantic.OPT_INDENT_2 and other levels of indentation are not supported.

Serialize

def dumps(
    __obj: Any,
    default: Optional[Callable[[Any], Any]] = ...,
    option: Optional[int] = ...,
) -> bytes: ...

dumps() serializes Python objects to JSON.

It natively serializes str, dict, list, tuple, int, float, bool, dataclasses.dataclass, typing.TypedDict, datetime.datetime, datetime.date, datetime.time, uuid.UUID, numpy.ndarray, pydantic.BaseModel, and None instances. It supports arbitrary types through default. It serializes subclasses of str, int, dict, list, dataclasses.dataclass, and enum.Enum. It does not serialize subclasses of tuple to avoid serializing namedtuple objects as arrays. To avoid serializing subclasses, specify the option orjson_pydantic.OPT_PASSTHROUGH_SUBCLASS.

The output is a bytes object containing UTF-8.

The global interpreter lock (GIL) is held for the duration of the call.

It raises JSONEncodeError on an unsupported type. This exception message describes the invalid object with the error message Type is not JSON serializable: .... To fix this, specify default.

It raises JSONEncodeError on a str that contains invalid UTF-8.

It raises JSONEncodeError on an integer that exceeds 64 bits by default or, with OPT_STRICT_INTEGER, 53 bits.

It raises JSONEncodeError if a dict has a key of a type other than str, unless OPT_NON_STR_KEYS is specified.

It raises JSONEncodeError if the output of default recurses to handling by default more than 254 levels deep.

It raises JSONEncodeError on circular references.

It raises JSONEncodeError if a tzinfo on a datetime object is unsupported.

JSONEncodeError is a subclass of TypeError. This is for compatibility with the standard library.

default

To serialize a subclass or arbitrary types, specify default as a callable that returns a supported type. default may be a function, lambda, or callable class instance. To specify that a type was not handled by default, raise an exception such as TypeError.

>>> import orjson_pydantic, decimal
>>>
def default(obj):
    if isinstance(obj, decimal.Decimal):
        return str(obj)
    raise TypeError

>>> orjson_pydantic.dumps(decimal.Decimal("0.0842389659712649442845"))
JSONEncodeError: Type is not JSON serializable: decimal.Decimal
>>> orjson_pydantic.dumps(decimal.Decimal("0.0842389659712649442845"), default=default)
b'"0.0842389659712649442845"'
>>> orjson_pydantic.dumps({1, 2}, default=default)
orjson_pydantic.JSONEncodeError: Type is not JSON serializable: set

The default callable may return an object that itself must be handled by default up to 254 times before an exception is raised.

It is important that default raise an exception if a type cannot be handled. Python otherwise implicitly returns None, which appears to the caller like a legitimate value and is serialized:

>>> import orjson_pydantic, json, rapidjson
>>>
def default(obj):
    if isinstance(obj, decimal.Decimal):
        return str(obj)

>>> orjson_pydantic.dumps({"set":{1, 2}}, default=default)
b'{"set":null}'
>>> json.dumps({"set":{1, 2}}, default=default)
'{"set":null}'
>>> rapidjson.dumps({"set":{1, 2}}, default=default)
'{"set":null}'

option

To modify how data is serialized, specify option. Each option is an integer constant in orjson. To specify multiple options, mask them together, e.g., option=orjson_pydantic.OPT_STRICT_INTEGER | orjson_pydantic.OPT_NAIVE_UTC.

OPT_APPEND_NEWLINE

Append \n to the output. This is a convenience and optimization for the pattern of dumps(...) + "\n". bytes objects are immutable and this pattern copies the original contents.

>>> import orjson_pydantic
>>> orjson_pydantic.dumps([])
b"[]"
>>> orjson_pydantic.dumps([], option=orjson_pydantic.OPT_APPEND_NEWLINE)
b"[]\n"
OPT_INDENT_2

Pretty-print output with an indent of two spaces. This is equivalent to indent=2 in the standard library. Pretty printing is slower and the output larger. orjson is the fastest compared library at pretty printing and has much less of a slowdown to pretty print than the standard library does. This option is compatible with all other options.

>>> import orjson_pydantic
>>> orjson_pydantic.dumps({"a": "b", "c": {"d": True}, "e": [1, 2]})
b'{"a":"b","c":{"d":true},"e":[1,2]}'
>>> orjson_pydantic.dumps(
    {"a": "b", "c": {"d": True}, "e": [1, 2]},
    option=orjson_pydantic.OPT_INDENT_2
)
b'{\n  "a": "b",\n  "c": {\n    "d": true\n  },\n  "e": [\n    1,\n    2\n  ]\n}'

If displayed, the indentation and linebreaks appear like this:

{
  "a": "b",
  "c": {
    "d": true
  },
  "e": [
    1,
    2
  ]
}

This measures serializing the github.json fixture as compact (52KiB) or pretty (64KiB):

Library compact (ms) pretty (ms) vs. orjson
orjson 0.06 0.07 1.0
ujson 0.18 0.19 2.8
rapidjson 0.22
simplejson 0.35 1.49 21.4
json 0.36 1.19 17.2

This measures serializing the citm_catalog.json fixture, more of a worst case due to the amount of nesting and newlines, as compact (489KiB) or pretty (1.1MiB):

Library compact (ms) pretty (ms) vs. orjson
orjson 0.88 1.73 1.0
ujson 3.73 4.52 2.6
rapidjson 3.54
simplejson 11.77 72.06 41.6
json 6.71 55.22 31.9

rapidjson is blank because it does not support pretty printing. This can be reproduced using the pyindent script.

OPT_NAIVE_UTC

Serialize datetime.datetime objects without a tzinfo as UTC. This has no effect on datetime.datetime objects that have tzinfo set.

>>> import orjson_pydantic, datetime
>>> orjson_pydantic.dumps(
        datetime.datetime(1970, 1, 1, 0, 0, 0),
    )
b'"1970-01-01T00:00:00"'
>>> orjson_pydantic.dumps(
        datetime.datetime(1970, 1, 1, 0, 0, 0),
        option=orjson_pydantic.OPT_NAIVE_UTC,
    )
b'"1970-01-01T00:00:00+00:00"'
OPT_NON_STR_KEYS

Serialize dict keys of type other than str. This allows dict keys to be one of str, int, float, bool, None, datetime.datetime, datetime.date, datetime.time, enum.Enum, and uuid.UUID. For comparison, the standard library serializes str, int, float, bool or None by default. orjson benchmarks as being faster at serializing non-str keys than other libraries. This option is slower for str keys than the default.

>>> import orjson_pydantic, datetime, uuid
>>> orjson_pydantic.dumps(
        {uuid.UUID("7202d115-7ff3-4c81-a7c1-2a1f067b1ece"): [1, 2, 3]},
        option=orjson_pydantic.OPT_NON_STR_KEYS,
    )
b'{"7202d115-7ff3-4c81-a7c1-2a1f067b1ece":[1,2,3]}'
>>> orjson_pydantic.dumps(
        {datetime.datetime(1970, 1, 1, 0, 0, 0): [1, 2, 3]},
        option=orjson_pydantic.OPT_NON_STR_KEYS | orjson_pydantic.OPT_NAIVE_UTC,
    )
b'{"1970-01-01T00:00:00+00:00":[1,2,3]}'

These types are generally serialized how they would be as values, e.g., datetime.datetime is still an RFC 3339 string and respects options affecting it. The exception is that int serialization does not respect OPT_STRICT_INTEGER.

This option has the risk of creating duplicate keys. This is because non-str objects may serialize to the same str as an existing key, e.g., {"1": true, 1: false}. The last key to be inserted to the dict will be serialized last and a JSON deserializer will presumably take the last occurrence of a key (in the above, false). The first value will be lost.

This option is compatible with orjson_pydantic.OPT_SORT_KEYS. If sorting is used, note the sort is unstable and will be unpredictable for duplicate keys.

>>> import orjson_pydantic, datetime
>>> orjson_pydantic.dumps(
    {"other": 1, datetime.date(1970, 1, 5): 2, datetime.date(1970, 1, 3): 3},
    option=orjson_pydantic.OPT_NON_STR_KEYS | orjson_pydantic.OPT_SORT_KEYS
)
b'{"1970-01-03":3,"1970-01-05":2,"other":1}'

This measures serializing 589KiB of JSON comprising a list of 100 dict in which each dict has both 365 randomly-sorted int keys representing epoch timestamps as well as one str key and the value for each key is a single integer. In "str keys", the keys were converted to str before serialization, and orjson still specifes option=orjson_pydantic.OPT_NON_STR_KEYS (which is always somewhat slower).

Library str keys (ms) int keys (ms) int keys sorted (ms)
orjson 1.53 2.16 4.29
ujson 3.07 5.65
rapidjson 4.29
simplejson 11.24 14.50 21.86
json 7.17 8.49

ujson is blank for sorting because it segfaults. json is blank because it raises TypeError on attempting to sort before converting all keys to str. rapidjson is blank because it does not support non-str keys. This can be reproduced using the pynonstr script.

OPT_OMIT_MICROSECONDS

Do not serialize the microsecond field on datetime.datetime and datetime.time instances.

>>> import orjson_pydantic, datetime
>>> orjson_pydantic.dumps(
        datetime.datetime(1970, 1, 1, 0, 0, 0, 1),
    )
b'"1970-01-01T00:00:00.000001"'
>>> orjson_pydantic.dumps(
        datetime.datetime(1970, 1, 1, 0, 0, 0, 1),
        option=orjson_pydantic.OPT_OMIT_MICROSECONDS,
    )
b'"1970-01-01T00:00:00"'
OPT_PASSTHROUGH_DATACLASS

Passthrough dataclasses.dataclass instances to default. This allows customizing their output but is much slower.

>>> import orjson_pydantic, dataclasses
>>>
@dataclasses.dataclass
class User:
    id: str
    name: str
    password: str

def default(obj):
    if isinstance(obj, User):
        return {"id": obj.id, "name": obj.name}
    raise TypeError

>>> orjson_pydantic.dumps(User("3b1", "asd", "zxc"))
b'{"id":"3b1","name":"asd","password":"zxc"}'
>>> orjson_pydantic.dumps(User("3b1", "asd", "zxc"), option=orjson_pydantic.OPT_PASSTHROUGH_DATACLASS)
TypeError: Type is not JSON serializable: User
>>> orjson_pydantic.dumps(
        User("3b1", "asd", "zxc"),
        option=orjson_pydantic.OPT_PASSTHROUGH_DATACLASS,
        default=default,
    )
b'{"id":"3b1","name":"asd"}'
OPT_PASSTHROUGH_DATETIME

Passthrough datetime.datetime, datetime.date, and datetime.time instances to default. This allows serializing datetimes to a custom format, e.g., HTTP dates:

>>> import orjson_pydantic, datetime
>>>
def default(obj):
    if isinstance(obj, datetime.datetime):
        return obj.strftime("%a, %d %b %Y %H:%M:%S GMT")
    raise TypeError

>>> orjson_pydantic.dumps({"created_at": datetime.datetime(1970, 1, 1)})
b'{"created_at":"1970-01-01T00:00:00"}'
>>> orjson_pydantic.dumps({"created_at": datetime.datetime(1970, 1, 1)}, option=orjson_pydantic.OPT_PASSTHROUGH_DATETIME)
TypeError: Type is not JSON serializable: datetime.datetime
>>> orjson_pydantic.dumps(
        {"created_at": datetime.datetime(1970, 1, 1)},
        option=orjson_pydantic.OPT_PASSTHROUGH_DATETIME,
        default=default,
    )
b'{"created_at":"Thu, 01 Jan 1970 00:00:00 GMT"}'

This does not affect datetimes in dict keys if using OPT_NON_STR_KEYS.

OPT_PASSTHROUGH_SUBCLASS

Passthrough subclasses of builtin types to default.

>>> import orjson_pydantic
>>>
class Secret(str):
    pass

def default(obj):
    if isinstance(obj, Secret):
        return "******"
    raise TypeError

>>> orjson_pydantic.dumps(Secret("zxc"))
b'"zxc"'
>>> orjson_pydantic.dumps(Secret("zxc"), option=orjson_pydantic.OPT_PASSTHROUGH_SUBCLASS)
TypeError: Type is not JSON serializable: Secret
>>> orjson_pydantic.dumps(Secret("zxc"), option=orjson_pydantic.OPT_PASSTHROUGH_SUBCLASS, default=default)
b'"******"'

This does not affect serializing subclasses as dict keys if using OPT_NON_STR_KEYS.

OPT_SERIALIZE_DATACLASS

This is deprecated and has no effect in version 3. In version 2 this was required to serialize dataclasses.dataclass instances. For more, see dataclass.

OPT_SERIALIZE_NUMPY

Serialize numpy.ndarray instances. For more, see numpy.

OPT_SERIALIZE_UUID

This is deprecated and has no effect in version 3. In version 2 this was required to serialize uuid.UUID instances. For more, see UUID.

OPT_SORT_KEYS

Serialize dict keys in sorted order. The default is to serialize in an unspecified order. This is equivalent to sort_keys=True in the standard library.

This can be used to ensure the order is deterministic for hashing or tests. It has a substantial performance penalty and is not recommended in general.

>>> import orjson_pydantic
>>> orjson_pydantic.dumps({"b": 1, "c": 2, "a": 3})
b'{"b":1,"c":2,"a":3}'
>>> orjson_pydantic.dumps({"b": 1, "c": 2, "a": 3}, option=orjson_pydantic.OPT_SORT_KEYS)
b'{"a":3,"b":1,"c":2}'

This measures serializing the twitter.json fixture unsorted and sorted:

Library unsorted (ms) sorted (ms) vs. orjson
orjson 0.5 0.92 1
ujson 1.61 2.48 2.7
rapidjson 2.17 2.89 3.2
simplejson 3.56 5.13 5.6
json 3.59 4.59 5

The benchmark can be reproduced using the pysort script.

The sorting is not collation/locale-aware:

>>> import orjson_pydantic
>>> orjson_pydantic.dumps({"a": 1, "ä": 2, "A": 3}, option=orjson_pydantic.OPT_SORT_KEYS)
b'{"A":3,"a":1,"\xc3\xa4":2}'

This is the same sorting behavior as the standard library, rapidjson, simplejson, and ujson.

dataclass also serialize as maps but this has no effect on them.

OPT_STRICT_INTEGER

Enforce 53-bit limit on integers. The limit is otherwise 64 bits, the same as the Python standard library. For more, see int.

OPT_UTC_Z

Serialize a UTC timezone on datetime.datetime instances as Z instead of +00:00.

>>> import orjson_pydantic, datetime, zoneinfo
>>> orjson_pydantic.dumps(
        datetime.datetime(1970, 1, 1, 0, 0, 0, tzinfo=zoneinfo.ZoneInfo("UTC")),
    )
b'"1970-01-01T00:00:00+00:00"'
>>> orjson_pydantic.dumps(
        datetime.datetime(1970, 1, 1, 0, 0, 0, tzinfo=zoneinfo.ZoneInfo("UTC")),
        option=orjson_pydantic.OPT_UTC_Z
    )
b'"1970-01-01T00:00:00Z"'
OPT_SERIALIZE_PYDANTIC

Serialize a pydantic.BaseModel instance. For more see pydantic.

Deserialize

def loads(__obj: Union[bytes, bytearray, memoryview, str]) -> Any: ...

loads() deserializes JSON to Python objects. It deserializes to dict, list, int, float, str, bool, and None objects.

bytes, bytearray, memoryview, and str input are accepted. If the input exists as a memoryview, bytearray, or bytes object, it is recommended to pass these directly rather than creating an unnecessary str object. This has lower memory usage and lower latency.

The input must be valid UTF-8.

orjson maintains a cache of map keys for the duration of the process. This causes a net reduction in memory usage by avoiding duplicate strings. The keys must be at most 64 bytes to be cached and 512 entries are stored.

The global interpreter lock (GIL) is held for the duration of the call.

It raises JSONDecodeError if given an invalid type or invalid JSON. This includes if the input contains NaN, Infinity, or -Infinity, which the standard library allows, but is not valid JSON.

JSONDecodeError is a subclass of json.JSONDecodeError and ValueError. This is for compatibility with the standard library.

Types

dataclass

orjson serializes instances of dataclasses.dataclass natively. It serializes instances 40-50x as fast as other libraries and avoids a severe slowdown seen in other libraries compared to serializing dict.

It is supported to pass all variants of dataclasses, including dataclasses using __slots__, frozen dataclasses, those with optional or default attributes, and subclasses. There is a performance benefit to not using __slots__.

Library dict (ms) dataclass (ms) vs. orjson
orjson 1.40 1.60 1
ujson
rapidjson 3.64 68.48 42
simplejson 14.21 92.18 57
json 13.28 94.90 59

This measures serializing 555KiB of JSON, orjson natively and other libraries using default to serialize the output of dataclasses.asdict(). This can be reproduced using the pydataclass script.

Dataclasses are serialized as maps, with every attribute serialized and in the order given on class definition:

>>> import dataclasses, orjson, typing

@dataclasses.dataclass
class Member:
    id: int
    active: bool = dataclasses.field(default=False)

@dataclasses.dataclass
class Object:
    id: int
    name: str
    members: typing.List[Member]

>>> orjson_pydantic.dumps(Object(1, "a", [Member(1, True), Member(2)]))
b'{"id":1,"name":"a","members":[{"id":1,"active":true},{"id":2,"active":false}]}'

Users may wish to control how dataclass instances are serialized, e.g., to not serialize an attribute or to change the name of an attribute when serialized. orjson may implement support using the metadata mapping on field attributes, e.g., field(metadata={"json_serialize": False}), if use cases are clear.

datetime

orjson serializes datetime.datetime objects to RFC 3339 format, e.g., "1970-01-01T00:00:00+00:00". This is a subset of ISO 8601 and is compatible with isoformat() in the standard library.

>>> import orjson_pydantic, datetime, zoneinfo
>>> orjson_pydantic.dumps(
    datetime.datetime(2018, 12, 1, 2, 3, 4, 9, tzinfo=zoneinfo.ZoneInfo("Australia/Adelaide"))
)
b'"2018-12-01T02:03:04.000009+10:30"'
>>> orjson_pydantic.dumps(
    datetime.datetime(2100, 9, 1, 21, 55, 2).replace(tzinfo=zoneinfo.ZoneInfo("UTC"))
)
b'"2100-09-01T21:55:02+00:00"'
>>> orjson_pydantic.dumps(
    datetime.datetime(2100, 9, 1, 21, 55, 2)
)
b'"2100-09-01T21:55:02"'

datetime.datetime supports instances with a tzinfo that is None, datetime.timezone.utc, a timezone instance from the python3.9+ zoneinfo module, or a timezone instance from the third-party pendulum, pytz, or dateutil/arrow libraries.

It is fastest to use the standard library's zoneinfo.ZoneInfo for timezones.

datetime.time objects must not have a tzinfo.

>>> import orjson_pydantic, datetime
>>> orjson_pydantic.dumps(datetime.time(12, 0, 15, 290))
b'"12:00:15.000290"'

datetime.date objects will always serialize.

>>> import orjson_pydantic, datetime
>>> orjson_pydantic.dumps(datetime.date(1900, 1, 2))
b'"1900-01-02"'

Errors with tzinfo result in JSONEncodeError being raised.

It is faster to have orjson serialize datetime objects than to do so before calling dumps(). If using an unsupported type such as pendulum.datetime, use default.

To disable serialization of datetime objects specify the option orjson_pydantic.OPT_PASSTHROUGH_DATETIME.

To use "Z" suffix instead of "+00:00" to indicate UTC ("Zulu") time, use the option orjson_pydantic.OPT_UTC_Z.

To assume datetimes without timezone are UTC, se the option orjson_pydantic.OPT_NAIVE_UTC.

enum

orjson serializes enums natively. Options apply to their values.

>>> import enum, datetime, orjson
>>>
class DatetimeEnum(enum.Enum):
    EPOCH = datetime.datetime(1970, 1, 1, 0, 0, 0)
>>> orjson_pydantic.dumps(DatetimeEnum.EPOCH)
b'"1970-01-01T00:00:00"'
>>> orjson_pydantic.dumps(DatetimeEnum.EPOCH, option=orjson_pydantic.OPT_NAIVE_UTC)
b'"1970-01-01T00:00:00+00:00"'

Enums with members that are not supported types can be serialized using default:

>>> import enum, orjson
>>>
class Custom:
    def __init__(self, val):
        self.val = val

def default(obj):
    if isinstance(obj, Custom):
        return obj.val
    raise TypeError

class CustomEnum(enum.Enum):
    ONE = Custom(1)

>>> orjson_pydantic.dumps(CustomEnum.ONE, default=default)
b'1'

float

orjson serializes and deserializes double precision floats with no loss of precision and consistent rounding. The same behavior is observed in rapidjson, simplejson, and json. ujson 1.35 was inaccurate in both serialization and deserialization, i.e., it modifies the data, and the recent 2.0 release is accurate.

orjson_pydantic.dumps() serializes Nan, Infinity, and -Infinity, which are not compliant JSON, as null:

>>> import orjson_pydantic, ujson, rapidjson, json
>>> orjson_pydantic.dumps([float("NaN"), float("Infinity"), float("-Infinity")])
b'[null,null,null]'
>>> ujson.dumps([float("NaN"), float("Infinity"), float("-Infinity")])
OverflowError: Invalid Inf value when encoding double
>>> rapidjson.dumps([float("NaN"), float("Infinity"), float("-Infinity")])
'[NaN,Infinity,-Infinity]'
>>> json.dumps([float("NaN"), float("Infinity"), float("-Infinity")])
'[NaN, Infinity, -Infinity]'

int

orjson serializes and deserializes 64-bit integers by default. The range supported is a signed 64-bit integer's minimum (-9223372036854775807) to an unsigned 64-bit integer's maximum (18446744073709551615). This is widely compatible, but there are implementations that only support 53-bits for integers, e.g., web browsers. For those implementations, dumps() can be configured to raise a JSONEncodeError on values exceeding the 53-bit range.

>>> import orjson_pydantic
>>> orjson_pydantic.dumps(9007199254740992)
b'9007199254740992'
>>> orjson_pydantic.dumps(9007199254740992, option=orjson_pydantic.OPT_STRICT_INTEGER)
JSONEncodeError: Integer exceeds 53-bit range
>>> orjson_pydantic.dumps(-9007199254740992, option=orjson_pydantic.OPT_STRICT_INTEGER)
JSONEncodeError: Integer exceeds 53-bit range

numpy

orjson natively serializes numpy.ndarray and individual numpy.float64, numpy.float32, numpy.int64, numpy.int32, numpy.int8, numpy.uint64, numpy.uint32, numpy.uint8, numpy.uintp, or numpy.intp, and numpy.datetime64 instances.

orjson is faster than all compared libraries at serializing numpy instances. Serializing numpy data requires specifying option=orjson_pydantic.OPT_SERIALIZE_NUMPY.

>>> import orjson_pydantic, numpy
>>> orjson_pydantic.dumps(
        numpy.array([[1, 2, 3], [4, 5, 6]]),
        option=orjson_pydantic.OPT_SERIALIZE_NUMPY,
)
b'[[1,2,3],[4,5,6]]'

The array must be a contiguous C array (C_CONTIGUOUS) and one of the supported datatypes.

numpy.datetime64 instances are serialized as RFC 3339 strings and datetime options affect them.

>>> import orjson_pydantic, numpy
>>> orjson_pydantic.dumps(
        numpy.datetime64("2021-01-01T00:00:00.172"),
        option=orjson_pydantic.OPT_SERIALIZE_NUMPY,
)
b'"2021-01-01T00:00:00.172000"'
>>> orjson_pydantic.dumps(
        numpy.datetime64("2021-01-01T00:00:00.172"),
        option=(
            orjson_pydantic.OPT_SERIALIZE_NUMPY |
            orjson_pydantic.OPT_NAIVE_UTC |
            orjson_pydantic.OPT_OMIT_MICROSECONDS
        ),
)
b'"2021-01-01T00:00:00+00:00"'

If an array is not a contiguous C array, contains an supported datatype, or contains a numpy.datetime64 using an unsupported representation (e.g., picoseconds), orjson falls through to default. In default, obj.tolist() can be specified. If an array is malformed, which is not expected, orjson_pydantic.JSONEncodeError is raised.

This measures serializing 92MiB of JSON from an numpy.ndarray with dimensions of (50000, 100) and numpy.float64 values:

Library Latency (ms) RSS diff (MiB) vs. orjson
orjson 194 99 1.0
ujson
rapidjson 3,048 309 15.7
simplejson 3,023 297 15.6
json 3,133 297 16.1

This measures serializing 100MiB of JSON from an numpy.ndarray with dimensions of (100000, 100) and numpy.int32 values:

Library Latency (ms) RSS diff (MiB) vs. orjson
orjson 178 115 1.0
ujson
rapidjson 1,512 551 8.5
simplejson 1,606 504 9.0
json 1,506 503 8.4

This measures serializing 105MiB of JSON from an numpy.ndarray with dimensions of (100000, 200) and numpy.bool values:

Library Latency (ms) RSS diff (MiB) vs. orjson
orjson 157 120 1.0
ujson
rapidjson 710 327 4.5
simplejson 931 398 5.9
json 996 400 6.3

In these benchmarks, orjson serializes natively, ujson is blank because it does not support a default parameter, and the other libraries serialize ndarray.tolist() via default. The RSS column measures peak memory usage during serialization. This can be reproduced using the pynumpy script.

orjson does not have an installation or compilation dependency on numpy. The implementation is independent, reading numpy.ndarray using PyArrayInterface.

str

orjson is strict about UTF-8 conformance. This is stricter than the standard library's json module, which will serialize and deserialize UTF-16 surrogates, e.g., "\ud800", that are invalid UTF-8.

If orjson_pydantic.dumps() is given a str that does not contain valid UTF-8, orjson_pydantic.JSONEncodeError is raised. If loads() receives invalid UTF-8, orjson_pydantic.JSONDecodeError is raised.

orjson and rapidjson are the only compared JSON libraries to consistently error on bad input.

>>> import orjson_pydantic, ujson, rapidjson, json
>>> orjson_pydantic.dumps('\ud800')
JSONEncodeError: str is not valid UTF-8: surrogates not allowed
>>> ujson.dumps('\ud800')
UnicodeEncodeError: 'utf-8' codec ...
>>> rapidjson.dumps('\ud800')
UnicodeEncodeError: 'utf-8' codec ...
>>> json.dumps('\ud800')
'"\\ud800"'
>>> orjson_pydantic.loads('"\\ud800"')
JSONDecodeError: unexpected end of hex escape at line 1 column 8: line 1 column 1 (char 0)
>>> ujson.loads('"\\ud800"')
''
>>> rapidjson.loads('"\\ud800"')
ValueError: Parse error at offset 1: The surrogate pair in string is invalid.
>>> json.loads('"\\ud800"')
'\ud800'

To make a best effort at deserializing bad input, first decode bytes using the replace or lossy argument for errors:

>>> import orjson_pydantic
>>> orjson_pydantic.loads(b'"\xed\xa0\x80"')
JSONDecodeError: str is not valid UTF-8: surrogates not allowed
>>> orjson_pydantic.loads(b'"\xed\xa0\x80"'.decode("utf-8", "replace"))
'���'

uuid

orjson serializes uuid.UUID instances to RFC 4122 format, e.g., "f81d4fae-7dec-11d0-a765-00a0c91e6bf6".

>>> import orjson_pydantic, uuid
>>> orjson_pydantic.dumps(uuid.UUID('f81d4fae-7dec-11d0-a765-00a0c91e6bf6'))
b'"f81d4fae-7dec-11d0-a765-00a0c91e6bf6"'
>>> orjson_pydantic.dumps(uuid.uuid5(uuid.NAMESPACE_DNS, "python.org"))
b'"886313e1-3b8a-5372-9b90-0c9aee199e5d"'

pydantic

orjson serializes pydantic.BaseModel instances based on the existence of __fields__ attribute.

:warning: The serialization doesn't behave like pydantic.BaseModel.json():

  1. It doesn't respect any of the Config attributes.
  2. It doesn't have any of the additional features of Pydantic (json_encoder, exclusions, inclusions, etc).

Testing

The library has comprehensive tests. There are tests against fixtures in the JSONTestSuite and nativejson-benchmark repositories. It is tested to not crash against the Big List of Naughty Strings. It is tested to not leak memory. It is tested to not crash against and not accept invalid UTF-8. There are integration tests exercising the library's use in web servers (gunicorn using multiprocess/forked workers) and when multithreaded. It also uses some tests from the ultrajson library.

orjson is the most correct of the compared libraries. This graph shows how each library handles a combined 342 JSON fixtures from the JSONTestSuite and nativejson-benchmark tests:

Library Invalid JSON documents not rejected Valid JSON documents not deserialized
orjson 0 0
ujson 38 0
rapidjson 6 0
simplejson 13 0
json 17 0

This shows that all libraries deserialize valid JSON but only orjson correctly rejects the given invalid JSON fixtures. Errors are largely due to accepting invalid strings and numbers.

The graph above can be reproduced using the pycorrectness script.

Performance

Serialization and deserialization performance of orjson is better than ultrajson, rapidjson, simplejson, or json. The benchmarks are done on fixtures of real data:

  • twitter.json, 631.5KiB, results of a search on Twitter for "一", containing CJK strings, dictionaries of strings and arrays of dictionaries, indented.

  • github.json, 55.8KiB, a GitHub activity feed, containing dictionaries of strings and arrays of dictionaries, not indented.

  • citm_catalog.json, 1.7MiB, concert data, containing nested dictionaries of strings and arrays of integers, indented.

  • canada.json, 2.2MiB, coordinates of the Canadian border in GeoJSON format, containing floats and arrays, indented.

Latency

alt text alt text alt text alt text alt text alt text alt text alt text

twitter.json serialization

Library Median latency (milliseconds) Operations per second Relative (latency)
orjson 0.59 1698.8 1
ujson 2.14 464.3 3.64
rapidjson 2.39 418.5 4.06
simplejson 3.15 316.9 5.36
json 3.56 281.2 6.06

twitter.json deserialization

Library Median latency (milliseconds) Operations per second Relative (latency)
orjson 2.28 439.3 1
ujson 2.89 345.9 1.27
rapidjson 3.85 259.6 1.69
simplejson 3.66 272.1 1.61
json 4.05 246.7 1.78

github.json serialization

Library Median latency (milliseconds) Operations per second Relative (latency)
orjson 0.07 15265.2 1
ujson 0.22 4556.7 3.35
rapidjson 0.26 3808.9 4.02
simplejson 0.37 2690.4 5.68
json 0.35 2847.8 5.36

github.json deserialization

Library Median latency (milliseconds) Operations per second Relative (latency)
orjson 0.18 5610.1 1
ujson 0.28 3540.7 1.58
rapidjson 0.33 3031.5 1.85
simplejson 0.29 3385.6 1.65
json 0.29 3402.1 1.65

citm_catalog.json serialization

Library Median latency (milliseconds) Operations per second Relative (latency)
orjson 0.99 1008.5 1
ujson 3.69 270.7 3.72
rapidjson 3.55 281.4 3.58
simplejson 11.76 85.1 11.85
json 6.89 145.1 6.95

citm_catalog.json deserialization

Library Median latency (milliseconds) Operations per second Relative (latency)
orjson 4.53 220.5 1
ujson 5.67 176.5 1.25
rapidjson 7.51 133.3 1.66
simplejson 7.54 132.7 1.66
json 7.8 128.2 1.72

canada.json serialization

Library Median latency (milliseconds) Operations per second Relative (latency)
orjson 4.72 198.9 1
ujson 17.76 56.3 3.77
rapidjson 61.83 16.2 13.11
simplejson 80.6 12.4 17.09
json 52.38 18.8 11.11

canada.json deserialization

Library Median latency (milliseconds) Operations per second Relative (latency)
orjson 10.28 97.4 1
ujson 16.49 60.5 1.6
rapidjson 37.92 26.4 3.69
simplejson 37.7 26.5 3.67
json 37.87 27.6 3.68

Memory

orjson's memory usage when deserializing is similar to or lower than the standard library and other third-party libraries.

This measures, in the first column, RSS after importing a library and reading the fixture, and in the second column, increases in RSS after repeatedly calling loads() on the fixture.

twitter.json

Library import, read() RSS (MiB) loads() increase in RSS (MiB)
orjson 13.5 2.5
ujson 14 4.1
rapidjson 14.7 6.5
simplejson 13.2 2.5
json 12.9 2.3

github.json

Library import, read() RSS (MiB) loads() increase in RSS (MiB)
orjson 13.1 0.3
ujson 13.5 0.3
rapidjson 14 0.7
simplejson 12.6 0.3
json 12.3 0.1

citm_catalog.json

Library import, read() RSS (MiB) loads() increase in RSS (MiB)
orjson 14.6 7.9
ujson 15.1 11.1
rapidjson 15.8 36
simplejson 14.3 27.4
json 14 27.2

canada.json

Library import, read() RSS (MiB) loads() increase in RSS (MiB)
orjson 17.1 15.7
ujson 17.6 17.4
rapidjson 18.3 17.9
simplejson 16.9 19.6
json 16.5 19.4

Reproducing

The above was measured using Python 3.8.3 on Linux (x86_64) with orjson 3.3.0, ujson 3.0.0, python-rapidson 0.9.1, and simplejson 3.17.2.

The latency results can be reproduced using the pybench and graph scripts. The memory results can be reproduced using the pymem script.

Questions

Why can't I install it from PyPI?

Probably pip needs to be upgraded to version 20.3 or later to support the latest manylinux_x_y or universal2 wheel formats.

Will it deserialize to dataclasses, UUIDs, decimals, etc or support object_hook?

No. This requires a schema specifying what types are expected and how to handle errors etc. This is addressed by data validation libraries a level above this.

Will it serialize to str?

No. bytes is the correct type for a serialized blob.

Will it support PyPy?

If someone implements it well.

Packaging

To package orjson requires Rust and the maturin build tool.

This is an example for x86_64 on the Rust nightly channel:

export RUSTFLAGS="-C target-cpu=k8"
maturin build --release --strip --cargo-extra-args="--features=unstable-simd"

To build on the stable channel, do not specify --features=unstable-simd.

The project's own CI tests against nightly-2022-02-13 and stable 1.54. It is prudent to pin the nightly version because that channel can introduce breaking changes.

orjson is tested for amd64, aarch64, and arm7 on Linux. It is tested for amd64 on macOS and ships an aarch64 wheel also supporting aarch64. For Windows is is tested on amd64.

There are no runtime dependencies other than libc.

orjson's tests are included in the source distribution on PyPI. The requirements to run the tests are specified in test/requirements.txt. The tests should be run as part of the build. It can be run with pytest -q test.

License

orjson was written by ijl <ijl@mailbox.org>, copyright 2018 - 2022, licensed under both the Apache 2 and MIT licenses.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

orjson_pydantic2-3.6.7.tar.gz (552.4 kB view details)

Uploaded Source

Built Distributions

orjson_pydantic2-3.6.7-cp310-none-win_amd64.whl (194.4 kB view details)

Uploaded CPython 3.10 Windows x86-64

orjson_pydantic2-3.6.7-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (265.4 kB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ x86-64

orjson_pydantic2-3.6.7-cp310-cp310-macosx_10_7_x86_64.whl (247.7 kB view details)

Uploaded CPython 3.10 macOS 10.7+ x86-64

orjson_pydantic2-3.6.7-cp39-none-win_amd64.whl (194.4 kB view details)

Uploaded CPython 3.9 Windows x86-64

orjson_pydantic2-3.6.7-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (265.4 kB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ x86-64

orjson_pydantic2-3.6.7-cp39-cp39-macosx_10_7_x86_64.whl (247.7 kB view details)

Uploaded CPython 3.9 macOS 10.7+ x86-64

orjson_pydantic2-3.6.7-cp38-none-win_amd64.whl (194.3 kB view details)

Uploaded CPython 3.8 Windows x86-64

orjson_pydantic2-3.6.7-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (265.3 kB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ x86-64

orjson_pydantic2-3.6.7-cp38-cp38-macosx_10_7_x86_64.whl (247.6 kB view details)

Uploaded CPython 3.8 macOS 10.7+ x86-64

orjson_pydantic2-3.6.7-cp37-none-win_amd64.whl (194.3 kB view details)

Uploaded CPython 3.7 Windows x86-64

orjson_pydantic2-3.6.7-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (265.3 kB view details)

Uploaded CPython 3.7m manylinux: glibc 2.17+ x86-64

orjson_pydantic2-3.6.7-cp37-cp37m-macosx_10_7_x86_64.whl (247.7 kB view details)

Uploaded CPython 3.7m macOS 10.7+ x86-64

File details

Details for the file orjson_pydantic2-3.6.7.tar.gz.

File metadata

  • Download URL: orjson_pydantic2-3.6.7.tar.gz
  • Upload date:
  • Size: 552.4 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.8.14

File hashes

Hashes for orjson_pydantic2-3.6.7.tar.gz
Algorithm Hash digest
SHA256 826f6df19739f138a7a37de581abf5c9d5d53acb8e41165134da49f75616f312
MD5 9b7496f762bcc2c8782219da27be7348
BLAKE2b-256 ecb74045d3b716234866b7641d106e8364b849d750acd4125b39b655661367ce

See more details on using hashes here.

File details

Details for the file orjson_pydantic2-3.6.7-cp310-none-win_amd64.whl.

File metadata

File hashes

Hashes for orjson_pydantic2-3.6.7-cp310-none-win_amd64.whl
Algorithm Hash digest
SHA256 de4ab461aa1d3f0f41e76bcfdb6d5be40b3bf2babbdfbaebafa7553a90083b20
MD5 e3d66d99e2efaefcb7480c115187c2bc
BLAKE2b-256 922441b7c26b85b33a3edadb4ec05e4a5ff87466e16c7a32c51b82dcca6064fc

See more details on using hashes here.

File details

Details for the file orjson_pydantic2-3.6.7-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for orjson_pydantic2-3.6.7-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 50c7c0ee13be749e84e32e1563ae9f096cdcffa72441f2110d57172e662057c4
MD5 441176ac43c39379bab7e39c76c335db
BLAKE2b-256 3e12c4fcd24d2854a9f23664c6ef35daa8928962bd6e0a159264eb818a36a97d

See more details on using hashes here.

File details

Details for the file orjson_pydantic2-3.6.7-cp310-cp310-macosx_10_7_x86_64.whl.

File metadata

File hashes

Hashes for orjson_pydantic2-3.6.7-cp310-cp310-macosx_10_7_x86_64.whl
Algorithm Hash digest
SHA256 3300a8552441f059e36daf525f175972b3e9577c0e4c1250b68cde001d5113db
MD5 582bedc9f119da8e03157f4ad7406e31
BLAKE2b-256 1576068b71a4e4e0c9a589ee2a60a2b0c9ac7b92afdaddded5a87b5f7719c057

See more details on using hashes here.

File details

Details for the file orjson_pydantic2-3.6.7-cp39-none-win_amd64.whl.

File metadata

File hashes

Hashes for orjson_pydantic2-3.6.7-cp39-none-win_amd64.whl
Algorithm Hash digest
SHA256 ab3a0ffe86a7fb54901df5ceb23877f78a3929fb38032e3a96cab22c6726090b
MD5 fd83de51f9a007eee8bc059dc16e566a
BLAKE2b-256 4d84a2f94e48dd4319c9bc1221096077e78812cff762a4059d9f44585792095d

See more details on using hashes here.

File details

Details for the file orjson_pydantic2-3.6.7-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for orjson_pydantic2-3.6.7-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 7a8b402eafe31241863bf26b6cdad4db91e7a1baa434b7e677b4db8159c466e9
MD5 c83a3672d40f77461a2df81d71a9779a
BLAKE2b-256 ca5a1cbb976294f7beea531ddf79349626d4d9247b85ab00f52da475a979ab65

See more details on using hashes here.

File details

Details for the file orjson_pydantic2-3.6.7-cp39-cp39-macosx_10_7_x86_64.whl.

File metadata

File hashes

Hashes for orjson_pydantic2-3.6.7-cp39-cp39-macosx_10_7_x86_64.whl
Algorithm Hash digest
SHA256 bf32e216e2304cbd020e5a5e4c18c44e359909c5a6aef0114ffa97410a4cc2fb
MD5 b9d3c4356abe9223065f22781f6aff3f
BLAKE2b-256 635aac95e7657daa75f84638d27e90e135af5ca6a2d96ba1fec9d0887b86520f

See more details on using hashes here.

File details

Details for the file orjson_pydantic2-3.6.7-cp38-none-win_amd64.whl.

File metadata

File hashes

Hashes for orjson_pydantic2-3.6.7-cp38-none-win_amd64.whl
Algorithm Hash digest
SHA256 25ef44e42ae65c42ef4d274b05380bc4ea735589d49f0ad4274c59d4bb572ef6
MD5 5ed2b963ad37fee71f8c9bc462a8f593
BLAKE2b-256 c4343e947b5eac6e0b647187503207379460140dc39be1d467351adba5d2931c

See more details on using hashes here.

File details

Details for the file orjson_pydantic2-3.6.7-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for orjson_pydantic2-3.6.7-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 96f507f5f181eb70a5451c9664154d3152a9092b07cdbdba3b07e9d6fcd5e613
MD5 15953712d4399c98dd96b7a2582300e0
BLAKE2b-256 705d76ebd413f4d7cec3d54d61cd28c0e85b0b9f3a3961fb708350d0302b031c

See more details on using hashes here.

File details

Details for the file orjson_pydantic2-3.6.7-cp38-cp38-macosx_10_7_x86_64.whl.

File metadata

File hashes

Hashes for orjson_pydantic2-3.6.7-cp38-cp38-macosx_10_7_x86_64.whl
Algorithm Hash digest
SHA256 894901042dcc513aca39b1233ef6408e1b8b2483dfe6d2d4962b9e762f3c41a7
MD5 2be6f02b480e6522a745c4c89729c17f
BLAKE2b-256 9175344c5cb96a8a257bca937a82c3faf52c405ecfc4ef5e4f732608c4a47b40

See more details on using hashes here.

File details

Details for the file orjson_pydantic2-3.6.7-cp37-none-win_amd64.whl.

File metadata

File hashes

Hashes for orjson_pydantic2-3.6.7-cp37-none-win_amd64.whl
Algorithm Hash digest
SHA256 73ffd808ab96ad690e1c96281ace7a0b152ce7b588ff42b9e07f9cbdf079cad9
MD5 7f56bf2f0e21ef3e20b4d6fd6b8f0571
BLAKE2b-256 e5bc6df9a92e1d27a126a174217db0cc669418732988aa6ba79354b5073a9b09

See more details on using hashes here.

File details

Details for the file orjson_pydantic2-3.6.7-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for orjson_pydantic2-3.6.7-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 eb6b49678fad2b4e324f7a40f7a03be4bf6805dc6171868a4e5cacf8ad6a4c61
MD5 3723098460c1c3751ab60dc2652bbdb3
BLAKE2b-256 9febd99118abef4bc83c7c14e7a25e5742542aa512ca64ab8d870f0e97772aae

See more details on using hashes here.

File details

Details for the file orjson_pydantic2-3.6.7-cp37-cp37m-macosx_10_7_x86_64.whl.

File metadata

File hashes

Hashes for orjson_pydantic2-3.6.7-cp37-cp37m-macosx_10_7_x86_64.whl
Algorithm Hash digest
SHA256 22df74dab0cd658c5868f7335fdebfcfd1c4847d1a1f03d24173f530132dc5f6
MD5 b35dc07257b72735467777dd8ef6990f
BLAKE2b-256 8e9b807d9eff96794a52cd6364ec15a1dd05a747af359d672c94bb63ca174caa

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page