Skip to main content

Fast, correct Python JSON library supporting dataclasses, datetimes, and numpy

Project description

orjson

orjson is a fast, correct JSON library for Python. It benchmarks as the fastest Python library for JSON and is more correct than the standard json library or other third-party libraries. It serializes dataclass, datetime, numpy, and UUID instances natively.

Its features and drawbacks compared to other Python JSON libraries:

  • serializes dataclass instances 40-50x as fast as other libraries
  • serializes datetime, date, and time instances to RFC 3339 format, e.g., "1970-01-01T00:00:00+00:00"
  • serializes numpy.ndarray instances 4-12x as fast with 0.3x the memory usage of other libraries
  • pretty prints 10x to 20x as fast as the standard library
  • serializes to bytes rather than str, i.e., is not a drop-in replacement
  • serializes str without escaping unicode to ASCII, e.g., "好" rather than "\\u597d"
  • serializes float 10x as fast and deserializes twice as fast as other libraries
  • serializes subclasses of str, int, list, and dict natively, requiring default to specify how to serialize others
  • serializes arbitrary types using a default hook
  • has strict UTF-8 conformance, more correct than the standard library
  • has strict JSON conformance in not supporting Nan/Infinity/-Infinity
  • has an option for strict JSON conformance on 53-bit integers with default support for 64-bit
  • does not provide load() or dump() functions for reading from/writing to file-like objects

orjson supports CPython 3.6, 3.7, 3.8, and 3.9. It distributes x86_64/amd64 and aarch64/armv8 wheels for Linux. It distributes x86_64/amd64 wheels for macOS and Windows. orjson does not support PyPy. Releases follow semantic versioning and serializing a new object type without an opt-in flag is considered a breaking change.

orjson is licensed under both the Apache 2.0 and MIT licenses. The repository and issue tracker is github.com/ijl/orjson, and patches may be submitted there. There is a CHANGELOG available in the repository.

  1. Usage
    1. Install
    2. Quickstart
    3. Migrating
    4. Serialize
      1. default
      2. option
    5. Deserialize
  2. Types
    1. dataclass
    2. datetime
    3. enum
    4. float
    5. int
    6. numpy
    7. str
    8. uuid
  3. Testing
  4. Performance
    1. Latency
    2. Memory
    3. Reproducing
  5. Questions
  6. Packaging
  7. License

Usage

Install

To install a wheel from PyPI:

pip install --upgrade orjson

To depend on orjson in a project:

orjson>=3,<4

To build a wheel, see packaging.

Quickstart

This is an example of serializing, with options specified, and deserializing:

>>> import orjson, datetime, numpy
>>> data = {
    "type": "job",
    "created_at": datetime.datetime(1970, 1, 1),
    "status": "🆗",
    "payload": numpy.array([[1, 2], [3, 4]]),
}
>>> orjson.dumps(data, option=orjson.OPT_NAIVE_UTC | orjson.OPT_SERIALIZE_NUMPY)
b'{"type":"job","created_at":"1970-01-01T00:00:00+00:00","status":"\xf0\x9f\x86\x97","payload":[[1,2],[3,4]]}'
>>> orjson.loads(_)
{'type': 'job', 'created_at': '1970-01-01T00:00:00+00:00', 'status': '🆗', 'payload': [[1, 2], [3, 4]]}

Migrating

orjson version 3 serializes more types than version 2. Subclasses of str, int, dict, and list are now serialized. This is faster and more similar to the standard library. It can be disabled with orjson.OPT_PASSTHROUGH_SUBCLASS.dataclasses.dataclass instances are now serialized by default and cannot be customized in a default function. uuid.UUID instances are serialized by default. For any type that is now serialized, implementations in a default function and options enabling them can be removed but do not need to be. There was no change in deserialization.

To migrate from the standard library, the largest difference is that orjson.dumps returns bytes and json.dumps returns a str. Users with dict objects using non-str keys should specify option=orjson.OPT_NON_STR_KEYS. sort_keys is replaced by option=orjson.OPT_SORT_KEYS. indent is replaced by option=orjson.OPT_INDENT_2 and other levels of indentation are not supported.

Serialize

def dumps(
    __obj: Any,
    default: Optional[Callable[[Any], Any]] = ...,
    option: Optional[int] = ...,
) -> bytes: ...

dumps() serializes Python objects to JSON.

It natively serializes str, dict, list, tuple, int, float, bool, dataclasses.dataclass, typing.TypedDict, datetime.datetime, datetime.date, datetime.time, uuid.UUID, numpy.ndarray, and None instances. It supports arbitrary types through default. It serializes subclasses of str, int, dict, list, dataclasses.dataclass, and enum.Enum. It does not serialize subclasses of tuple to avoid serializing namedtuple objects as arrays. To avoid serializing subclasses, specify the option orjson.OPT_PASSTHROUGH_SUBCLASS.

The output is a bytes object containing UTF-8.

It raises JSONEncodeError on an unsupported type. This exception message describes the invalid object with the error message Type is not JSON serializable: .... To fix this, specify default.

It raises JSONEncodeError on a str that contains invalid UTF-8.

It raises JSONEncodeError on an integer that exceeds 64 bits by default or, with OPT_STRICT_INTEGER, 53 bits.

It raises JSONEncodeError if a dict has a key of a type other than str, unless OPT_NON_STR_KEYS is specified.

It raises JSONEncodeError if the output of default recurses to handling by default more than 254 levels deep.

It raises JSONEncodeError on circular references.

It raises JSONEncodeError if a tzinfo on a datetime object is unsupported.

JSONEncodeError is a subclass of TypeError. This is for compatibility with the standard library.

default

To serialize a subclass or arbitrary types, specify default as a callable that returns a supported type. default may be a function, lambda, or callable class instance. To specify that a type was not handled by default, raise an exception such as TypeError.

>>> import orjson, decimal
>>>
def default(obj):
    if isinstance(obj, decimal.Decimal):
        return str(obj)
    raise TypeError

>>> orjson.dumps(decimal.Decimal("0.0842389659712649442845"))
JSONEncodeError: Type is not JSON serializable: decimal.Decimal
>>> orjson.dumps(decimal.Decimal("0.0842389659712649442845"), default=default)
b'"0.0842389659712649442845"'
>>> orjson.dumps({1, 2}, default=default)
orjson.JSONEncodeError: Type is not JSON serializable: set

The default callable may return an object that itself must be handled by default up to 254 times before an exception is raised.

It is important that default raise an exception if a type cannot be handled. Python otherwise implicitly returns None, which appears to the caller like a legitimate value and is serialized:

>>> import orjson, json, rapidjson
>>>
def default(obj):
    if isinstance(obj, decimal.Decimal):
        return str(obj)

>>> orjson.dumps({"set":{1, 2}}, default=default)
b'{"set":null}'
>>> json.dumps({"set":{1, 2}}, default=default)
'{"set":null}'
>>> rapidjson.dumps({"set":{1, 2}}, default=default)
'{"set":null}'

option

To modify how data is serialized, specify option. Each option is an integer constant in orjson. To specify multiple options, mask them together, e.g., option=orjson.OPT_STRICT_INTEGER | orjson.OPT_NAIVE_UTC.

OPT_APPEND_NEWLINE

Append \n to the output. This is a convenience and optimization for the pattern of dumps(...) + "\n". bytes objects are immutable and this pattern copies the original contents.

>>> import orjson
>>> orjson.dumps([])
b"[]"
>>> orjson.dumps([], option=orjson.OPT_APPEND_NEWLINE)
b"[]\n"
OPT_INDENT_2

Pretty-print output with an indent of two spaces. This is equivalent to indent=2 in the standard library. Pretty printing is slower and the output larger. orjson is the fastest compared library at pretty printing and has much less of a slowdown to pretty print than the standard library does. This option is compatible with all other options.

>>> import orjson
>>> orjson.dumps({"a": "b", "c": {"d": True}, "e": [1, 2]})
b'{"a":"b","c":{"d":true},"e":[1,2]}'
>>> orjson.dumps(
    {"a": "b", "c": {"d": True}, "e": [1, 2]},
    option=orjson.OPT_INDENT_2
)
b'{\n  "a": "b",\n  "c": {\n    "d": true\n  },\n  "e": [\n    1,\n    2\n  ]\n}'

If displayed, the indentation and linebreaks appear like this:

{
  "a": "b",
  "c": {
    "d": true
  },
  "e": [
    1,
    2
  ]
}

This measures serializing the github.json fixture as compact (52KiB) or pretty (64KiB):

Library compact (ms) pretty (ms) vs. orjson
orjson 0.07 0.07 1.0
ujson 0.16 0.17 2.4
rapidjson 0.29
simplejson 0.48 1.69 22.9
json 0.35 1.28 17.4

This measures serializing the citm_catalog.json fixture, more of a worst case due to the amount of nesting and newlines, as compact (489KiB) or pretty (1.1MiB):

Library compact (ms) pretty (ms) vs. orjson
orjson 1.32 2.49 1.0
ujson 3.67 5.23 2.1
rapidjson 3.67
simplejson 13.13 78.74 31.7
json 7.87 59.22 23.8

rapidjson is blank because it does not support pretty printing. This can be reproduced using the pyindent script.

OPT_NAIVE_UTC

Serialize datetime.datetime objects without a tzinfo as UTC. This has no effect on datetime.datetime objects that have tzinfo set.

>>> import orjson, datetime
>>> orjson.dumps(
        datetime.datetime(1970, 1, 1, 0, 0, 0),
    )
b'"1970-01-01T00:00:00"'
>>> orjson.dumps(
        datetime.datetime(1970, 1, 1, 0, 0, 0),
        option=orjson.OPT_NAIVE_UTC,
    )
b'"1970-01-01T00:00:00+00:00"'
OPT_NON_STR_KEYS

Serialize dict keys of type other than str. This allows dict keys to be one of str, int, float, bool, None, datetime.datetime, datetime.date, datetime.time, enum.Enum, and uuid.UUID. For comparison, the standard library serializes str, int, float, bool or None by default. orjson benchmarks as being faster at serializing non-str keys than other libraries. This option is slower for str keys than the default.

>>> import orjson, datetime, uuid
>>> orjson.dumps(
        {uuid.UUID("7202d115-7ff3-4c81-a7c1-2a1f067b1ece"): [1, 2, 3]},
        option=orjson.OPT_NON_STR_KEYS,
    )
b'{"7202d115-7ff3-4c81-a7c1-2a1f067b1ece":[1,2,3]}'
>>> orjson.dumps(
        {datetime.datetime(1970, 1, 1, 0, 0, 0): [1, 2, 3]},
        option=orjson.OPT_NON_STR_KEYS | orjson.OPT_NAIVE_UTC,
    )
b'{"1970-01-01T00:00:00+00:00":[1,2,3]}'

These types are generally serialized how they would be as values, e.g., datetime.datetime is still an RFC 3339 string and respects options affecting it. The exception is that int serialization does not respect OPT_STRICT_INTEGER.

This option has the risk of creating duplicate keys. This is because non-str objects may serialize to the same str as an existing key, e.g., {"1": true, 1: false}. The last key to be inserted to the dict will be serialized last and a JSON deserializer will presumably take the last occurrence of a key (in the above, false). The first value will be lost.

This option is compatible with orjson.OPT_SORT_KEYS. If sorting is used, note the sort is unstable and will be unpredictable for duplicate keys.

>>> import orjson, datetime
>>> orjson.dumps(
    {"other": 1, datetime.date(1970, 1, 5): 2, datetime.date(1970, 1, 3): 3},
    option=orjson.OPT_NON_STR_KEYS | orjson.OPT_SORT_KEYS
)
b'{"1970-01-03":3,"1970-01-05":2,"other":1}'

This measures serializing 589KiB of JSON comprising a list of 100 dict in which each dict has both 365 randomly-sorted int keys representing epoch timestamps as well as one str key and the value for each key is a single integer. In "str keys", the keys were converted to str before serialization, and orjson still specifes option=orjson.OPT_NON_STR_KEYS (which is always somewhat slower).

Library str keys (ms) int keys (ms) int keys sorted (ms)
orjson 1.97 2.24 6.50
ujson 2.82 5.32
rapidjson 4.47
simplejson 9.42 11.77 21.52
json 6.32 8.05

ujson is blank for sorting because it segfaults. json is blank because it raises TypeError on attempting to sort before converting all keys to str. rapidjson is blank because it does not support non-str keys. This can be reproduced using the pynonstr script.

OPT_OMIT_MICROSECONDS

Do not serialize the microsecond field on datetime.datetime and datetime.time instances.

>>> import orjson, datetime
>>> orjson.dumps(
        datetime.datetime(1970, 1, 1, 0, 0, 0, 1),
    )
b'"1970-01-01T00:00:00.000001"'
>>> orjson.dumps(
        datetime.datetime(1970, 1, 1, 0, 0, 0, 1),
        option=orjson.OPT_OMIT_MICROSECONDS,
    )
b'"1970-01-01T00:00:00"'
OPT_PASSTHROUGH_DATETIME

Passthrough datetime.datetime, datetime.date, and datetime.time instances to default. This allows serializing datetimes to a custom format, e.g., HTTP dates:

>>> import orjson, datetime
>>>
def default(obj):
    if isinstance(obj, datetime.datetime):
        return obj.strftime("%a, %d %b %Y %H:%M:%S GMT")
    raise TypeError

>>> orjson.dumps({"created_at": datetime.datetime(1970, 1, 1)})
b'{"created_at":"1970-01-01T00:00:00"}'
>>> orjson.dumps({"created_at": datetime.datetime(1970, 1, 1)}, option=orjson.OPT_PASSTHROUGH_DATETIME)
TypeError: Type is not JSON serializable: datetime.datetime
>>> orjson.dumps(
        {"created_at": datetime.datetime(1970, 1, 1)},
        option=orjson.OPT_PASSTHROUGH_DATETIME,
        default=default,
    )
b'{"created_at":"Thu, 01 Jan 1970 00:00:00 GMT"}'

This does not affect datetimes in dict keys if using OPT_NON_STR_KEYS.

OPT_PASSTHROUGH_SUBCLASS

Passthrough subclasses of builtin types to default.

>>> import orjson
>>>
class Secret(str):
    pass

def default(obj):
    if isinstance(obj, Secret):
        return "******"
    raise TypeError

>>> orjson.dumps(Secret("zxc"))
b'"zxc"'
>>> orjson.dumps(Secret("zxc"), option=orjson.OPT_PASSTHROUGH_SUBCLASS)
TypeError: Type is not JSON serializable: Secret
>>> orjson.dumps(Secret("zxc"), option=orjson.OPT_PASSTHROUGH_SUBCLASS, default=default)
b'"******"'

This does not affect serializing subclasses as dict keys if using OPT_NON_STR_KEYS.

OPT_SERIALIZE_DATACLASS

This is deprecated and has no effect in version 3. In version 2 this was required to serialize dataclasses.dataclass instances. For more, see dataclass.

OPT_SERIALIZE_NUMPY

Serialize numpy.ndarray instances. For more, see numpy.

OPT_SERIALIZE_UUID

This is deprecated and has no effect in version 3. In version 2 this was required to serialize uuid.UUID instances. For more, see UUID.

OPT_SORT_KEYS

Serialize dict keys in sorted order. The default is to serialize in an unspecified order. This is equivalent to sort_keys=True in the standard library.

This can be used to ensure the order is deterministic for hashing or tests. It has a substantial performance penalty and is not recommended in general.

>>> import orjson
>>> orjson.dumps({"b": 1, "c": 2, "a": 3})
b'{"b":1,"c":2,"a":3}'
>>> orjson.dumps({"b": 1, "c": 2, "a": 3}, option=orjson.OPT_SORT_KEYS)
b'{"a":3,"b":1,"c":2}'

This measures serializing the twitter.json fixture unsorted and sorted:

Library unsorted (ms) sorted (ms) vs. orjson
orjson 0.5 0.92 1
ujson 1.61 2.48 2.7
rapidjson 2.17 2.89 3.2
simplejson 3.56 5.13 5.6
json 3.59 4.59 5

The benchmark can be reproduced using the pysort script.

The sorting is not collation/locale-aware:

>>> import orjson
>>> orjson.dumps({"a": 1, "ä": 2, "A": 3}, option=orjson.OPT_SORT_KEYS)
b'{"A":3,"a":1,"\xc3\xa4":2}'

This is the same sorting behavior as the standard library, rapidjson, simplejson, and ujson.

dataclass also serialize as maps but this has no effect on them.

OPT_STRICT_INTEGER

Enforce 53-bit limit on integers. The limit is otherwise 64 bits, the same as the Python standard library. For more, see int.

OPT_UTC_Z

Serialize a UTC timezone on datetime.datetime instances as Z instead of +00:00.

>>> import orjson, datetime
>>> orjson.dumps(
        datetime.datetime(1970, 1, 1, 0, 0, 0, tzinfo=datetime.timezone.utc),
    )
b'"1970-01-01T00:00:00+00:00"'
>>> orjson.dumps(
        datetime.datetime(1970, 1, 1, 0, 0, 0, tzinfo=datetime.timezone.utc),
        option=orjson.OPT_UTC_Z
    )
b'"1970-01-01T00:00:00Z"'

Deserialize

def loads(__obj: Union[bytes, bytearray, str]) -> Any: ...

loads() deserializes JSON to Python objects. It deserializes to dict, list, int, float, str, bool, and None objects.

bytes, bytearray, and str input are accepted. If the input exists as bytes (was read directly from a source), it is recommended to pass bytes. This has lower memory usage and lower latency.

The input must be valid UTF-8.

orjson maintains a cache of map keys for the duration of the process. This causes a net reduction in memory usage by avoiding duplicate strings. The keys must be at most 64 chars to be cached and 512 entries are stored.

It raises JSONDecodeError if given an invalid type or invalid JSON. This includes if the input contains NaN, Infinity, or -Infinity, which the standard library allows, but is not valid JSON.

JSONDecodeError is a subclass of json.JSONDecodeError and ValueError. This is for compatibility with the standard library.

Types

dataclass

orjson serializes instances of dataclasses.dataclass natively. It serializes instances 40-50x as fast as other libraries and avoids a severe slowdown seen in other libraries compared to serializing dict.

It is supported to pass all variants of dataclasses, including dataclasses using __slots__, frozen dataclasses, those with optional or default attributes, and subclasses. There is a performance benefit to not using __slots__.

Library dict (ms) dataclass (ms) vs. orjson
orjson 1.40 1.60 1
ujson
rapidjson 3.64 68.48 42
simplejson 14.21 92.18 57
json 13.28 94.90 59

This measures serializing 555KiB of JSON, orjson natively and other libraries using default to serialize the output of dataclasses.asdict(). This can be reproduced using the pydataclass script.

Dataclasses are serialized as maps, with every attribute serialized and in the order given on class definition:

>>> import dataclasses, orjson, typing

@dataclasses.dataclass
class Member:
    id: int
    active: bool = dataclasses.field(default=False)

@dataclasses.dataclass
class Object:
    id: int
    name: str
    members: typing.List[Member]

>>> orjson.dumps(Object(1, "a", [Member(1, True), Member(2)]))
b'{"id":1,"name":"a","members":[{"id":1,"active":true},{"id":2,"active":false}]}'

Users may wish to control how dataclass instances are serialized, e.g., to not serialize an attribute or to change the name of an attribute when serialized. orjson may implement support using the metadata mapping on field attributes, e.g., field(metadata={"json_serialize": False}), if use cases are clear.

datetime

orjson serializes datetime.datetime objects to RFC 3339 format, e.g., "1970-01-01T00:00:00+00:00". This is a subset of ISO 8601 and compatible with isoformat() in the standard library.

>>> import orjson, datetime, pendulum
>>> orjson.dumps(
    datetime.datetime(2018, 12, 1, 2, 3, 4, 9, tzinfo=pendulum.timezone('Australia/Adelaide'))
)
b'"2018-12-01T02:03:04.000009+10:30"'
>>> orjson.dumps(
    datetime.datetime.fromtimestamp(4123518902).replace(tzinfo=datetime.timezone.utc)
)
b'"2100-09-01T21:55:02+00:00"'
>>> orjson.dumps(
    datetime.datetime.fromtimestamp(4123518902)
)
b'"2100-09-01T21:55:02"'

datetime.datetime supports instances with a tzinfo that is None, datetime.timezone.utc or a timezone instance from the pendulum, pytz, or dateutil/arrow libraries.

datetime.time objects must not have a tzinfo.

>>> import orjson, datetime
>>> orjson.dumps(datetime.time(12, 0, 15, 290))
b'"12:00:15.000290"'

datetime.date objects will always serialize.

>>> import orjson, datetime
>>> orjson.dumps(datetime.date(1900, 1, 2))
b'"1900-01-02"'

Errors with tzinfo result in JSONEncodeError being raised.

It is faster to have orjson serialize datetime objects than to do so before calling dumps(). If using an unsupported type such as pendulum.datetime, use default.

To disable serialization of datetime objects specify the option orjson.OPT_PASSTHROUGH_DATETIME.

enum

orjson serializes enums natively. Options apply to their values.

>>> import enum, datetime, orjson
>>>
class DatetimeEnum(enum.Enum):
    EPOCH = datetime.datetime(1970, 1, 1, 0, 0, 0)
>>> orjson.dumps(DatetimeEnum.EPOCH)
b'"1970-01-01T00:00:00"'
>>> orjson.dumps(DatetimeEnum.EPOCH, option=orjson.OPT_NAIVE_UTC)
b'"1970-01-01T00:00:00+00:00"'

Enums with members that are not supported types can be serialized using default:

>>> import enum, orjson
>>>
class Custom:
    def __init__(self, val):
        self.val = val

def default(obj):
    if isinstance(obj, Custom):
        return obj.val
    raise TypeError

class CustomEnum(enum.Enum):
    ONE = Custom(1)

>>> orjson.dumps(CustomEnum.ONE, default=default)
b'1'

float

orjson serializes and deserializes double precision floats with no loss of precision and consistent rounding. The same behavior is observed in rapidjson, simplejson, and json. ujson 1.35 was inaccurate in both serialization and deserialization, i.e., it modifies the data, and the recent 2.0 release is accurate.

orjson.dumps() serializes Nan, Infinity, and -Infinity, which are not compliant JSON, as null:

>>> import orjson, ujson, rapidjson, json
>>> orjson.dumps([float("NaN"), float("Infinity"), float("-Infinity")])
b'[null,null,null]'
>>> ujson.dumps([float("NaN"), float("Infinity"), float("-Infinity")])
OverflowError: Invalid Inf value when encoding double
>>> rapidjson.dumps([float("NaN"), float("Infinity"), float("-Infinity")])
'[NaN,Infinity,-Infinity]'
>>> json.dumps([float("NaN"), float("Infinity"), float("-Infinity")])
'[NaN, Infinity, -Infinity]'

int

JSON only requires that implementations accept integers with 53-bit precision. orjson will, by default, serialize 64-bit integers. This is compatible with the Python standard library and other non-browser implementations. For transmitting JSON to a web browser or other strict implementations, dumps() can be configured to raise a JSONEncodeError on values exceeding the 53-bit range.

>>> import orjson
>>> orjson.dumps(9007199254740992)
b'9007199254740992'
>>> orjson.dumps(9007199254740992, option=orjson.OPT_STRICT_INTEGER)
JSONEncodeError: Integer exceeds 53-bit range
>>> orjson.dumps(-9007199254740992, option=orjson.OPT_STRICT_INTEGER)
JSONEncodeError: Integer exceeds 53-bit range

numpy

orjson natively serializes numpy.ndarray instances. Arrays may have a dtype of numpy.bool, numpy.float32, numpy.float64, numpy.int32, numpy.int64, numpy.uint32, numpy.uint64, numpy.uintp, or numpy.intp. orjson is faster than all compared libraries at serializing numpy instances. Serializing numpy data requires specifying option=orjson.OPT_SERIALIZE_NUMPY.

>>> import orjson, numpy
>>> orjson.dumps(
        numpy.array([[1, 2, 3], [4, 5, 6]]),
        option=orjson.OPT_SERIALIZE_NUMPY,
)
b'[[1,2,3],[4,5,6]]'

The array must be a contiguous C array (C_CONTIGUOUS) and one of the supported datatypes. Individual items (e.g., numpy.float64(1)) are not supported.

If an array is not a contiguous C array or contains an supported datatype, orjson falls through to default. In default, obj.tolist() can be specified. If an array is malformed, which is not expected, orjson.JSONEncodeError is raised.

This measures serializing 92MiB of JSON from an numpy.ndarray with dimensions of (50000, 100) and numpy.float64 values:

Library Latency (ms) RSS diff (MiB) vs. orjson
orjson 302 99 1.0
ujson
rapidjson 3,620 310 12.0
simplejson 3,596 297 11.9
json 3,410 298 11.3

This measures serializing 100MiB of JSON from an numpy.ndarray with dimensions of (100000, 100) and numpy.int32 values:

Library Latency (ms) RSS diff (MiB) vs. orjson
orjson 191 118 1.0
ujson
rapidjson 1,808 553 9.5
simplejson 1,796 506 9.4
json 1,590 506 8.3

This measures serializing 105MiB of JSON from an numpy.ndarray with dimensions of (100000, 200) and numpy.bool values:

Library Latency (ms) RSS diff (MiB) vs. orjson
orjson 211 123 1.0
ujson
rapidjson 919 346 4.3
simplejson 1,239 367 5.9
json 1,243 367 5.9

In these benchmarks, orjson serializes natively, ujson is blank because it does not support a default parameter, and the other libraries serialize ndarray.tolist() via default. The RSS column measures peak memory usage during serialization. This can be reproduced using the pynumpy script.

orjson does not have an installation or compilation dependency on numpy. The implementation is independent, reading numpy.ndarray using PyArrayInterface.

str

orjson is strict about UTF-8 conformance. This is stricter than the standard library's json module, which will serialize and deserialize UTF-16 surrogates, e.g., "\ud800", that are invalid UTF-8.

If orjson.dumps() is given a str that does not contain valid UTF-8, orjson.JSONEncodeError is raised. If loads() receives invalid UTF-8, orjson.JSONDecodeError is raised.

orjson and rapidjson are the only compared JSON libraries to consistently error on bad input.

>>> import orjson, ujson, rapidjson, json
>>> orjson.dumps('\ud800')
JSONEncodeError: str is not valid UTF-8: surrogates not allowed
>>> ujson.dumps('\ud800')
UnicodeEncodeError: 'utf-8' codec ...
>>> rapidjson.dumps('\ud800')
UnicodeEncodeError: 'utf-8' codec ...
>>> json.dumps('\ud800')
'"\\ud800"'
>>> orjson.loads('"\\ud800"')
JSONDecodeError: unexpected end of hex escape at line 1 column 8: line 1 column 1 (char 0)
>>> ujson.loads('"\\ud800"')
''
>>> rapidjson.loads('"\\ud800"')
ValueError: Parse error at offset 1: The surrogate pair in string is invalid.
>>> json.loads('"\\ud800"')
'\ud800'

To make a best effort at deserializing bad input, first decode bytes using the replace or lossy argument for errors:

>>> import orjson
>>> orjson.loads(b'"\xed\xa0\x80"')
JSONDecodeError: str is not valid UTF-8: surrogates not allowed
>>> orjson.loads(b'"\xed\xa0\x80"'.decode("utf-8", "replace"))
'���'

uuid

orjson serializes uuid.UUID instances to RFC 4122 format, e.g., "f81d4fae-7dec-11d0-a765-00a0c91e6bf6".

>>> import orjson, uuid
>>> orjson.dumps(uuid.UUID('f81d4fae-7dec-11d0-a765-00a0c91e6bf6'))
b'"f81d4fae-7dec-11d0-a765-00a0c91e6bf6"'
>>> orjson.dumps(uuid.uuid5(uuid.NAMESPACE_DNS, "python.org"))
b'"886313e1-3b8a-5372-9b90-0c9aee199e5d"'

Testing

The library has comprehensive tests. There are tests against fixtures in the JSONTestSuite and nativejson-benchmark repositories. It is tested to not crash against the Big List of Naughty Strings. It is tested to not leak memory. It is tested to not crash against and not accept invalid UTF-8. There are integration tests exercising the library's use in web servers (gunicorn using multiprocess/forked workers) and when multithreaded. It also uses some tests from the ultrajson library.

Performance

Serialization and deserialization performance of orjson is better than ultrajson, rapidjson, simplejson, or json. The benchmarks are done on fixtures of real data:

  • twitter.json, 631.5KiB, results of a search on Twitter for "一", containing CJK strings, dictionaries of strings and arrays of dictionaries, indented.

  • github.json, 55.8KiB, a GitHub activity feed, containing dictionaries of strings and arrays of dictionaries, not indented.

  • citm_catalog.json, 1.7MiB, concert data, containing nested dictionaries of strings and arrays of integers, indented.

  • canada.json, 2.2MiB, coordinates of the Canadian border in GeoJSON format, containing floats and arrays, indented.

Latency

alt text alt text alt text alt text alt text alt text alt text alt text

twitter.json serialization

Library Median latency (milliseconds) Operations per second Relative (latency)
orjson 0.58 1706.8 1
ujson 2.09 473 3.58
rapidjson 2.47 403.4 4.23
simplejson 3.22 308.5 5.51
json 3.33 300 5.69

twitter.json deserialization

Library Median latency (milliseconds) Operations per second Relative (latency)
orjson 2.61 383 1
ujson 2.83 353 1.09
rapidjson 3.75 266.8 1.44
simplejson 3.26 306.8 1.25
json 3.79 263.8 1.45

github.json serialization

Library Median latency (milliseconds) Operations per second Relative (latency)
orjson 0.07 14806.2 1
ujson 0.21 4850 3.05
rapidjson 0.27 3746.4 3.94
simplejson 0.45 2221.1 6.66
json 0.36 2749.4 5.38

github.json deserialization

Library Median latency (milliseconds) Operations per second Relative (latency)
orjson 0.22 4617.1 1
ujson 0.27 3715.6 1.25
rapidjson 0.31 3189.1 1.45
simplejson 0.29 3505.5 1.32
json 0.32 3161.7 1.46

citm_catalog.json serialization

Library Median latency (milliseconds) Operations per second Relative (latency)
orjson 1 1005 1
ujson 3.63 275.6 3.64
rapidjson 3.5 287.1 3.51
simplejson 10.98 89.8 11.04
json 6.95 141.4 6.98

citm_catalog.json deserialization

Library Median latency (milliseconds) Operations per second Relative (latency)
orjson 4.48 223.1 1
ujson 5.57 179.4 1.24
rapidjson 7.52 132.4 1.68
simplejson 7.41 134.6 1.65
json 7.92 126.2 1.77

canada.json serialization

Library Median latency (milliseconds) Operations per second Relative (latency)
orjson 4.61 217.1 1
ujson 19.2 53.2 4.17
rapidjson 60.74 16.4 13.19
simplejson 78.13 12.7 16.97
json 62.48 16 13.57

canada.json deserialization

Library Median latency (milliseconds) Operations per second Relative (latency)
orjson 9.95 100.9 1
ujson 15.73 63.7 1.58
rapidjson 37.59 26.6 3.78
simplejson 36.12 27.7 3.63
json 37.66 26.6 3.79

Memory

orjson's memory usage when deserializing is similar to or lower than the standard library and other third-party libraries.

This measures, in the first column, RSS after importing a library and reading the fixture, and in the second column, increases in RSS after repeatedly calling loads() on the fixture.

twitter.json

Library import, read() RSS (MiB) loads() increase in RSS (MiB)
orjson 13.5 2.5
ujson 14 4.1
rapidjson 14.7 6.5
simplejson 13.2 2.5
json 12.9 2.3

github.json

Library import, read() RSS (MiB) loads() increase in RSS (MiB)
orjson 13.1 0.3
ujson 13.5 0.3
rapidjson 14 0.7
simplejson 12.6 0.3
json 12.3 0.1

citm_catalog.json

Library import, read() RSS (MiB) loads() increase in RSS (MiB)
orjson 14.6 7.9
ujson 15.1 11.1
rapidjson 15.8 36
simplejson 14.3 27.4
json 14 27.2

canada.json

Library import, read() RSS (MiB) loads() increase in RSS (MiB)
orjson 17.1 15.7
ujson 17.6 17.4
rapidjson 18.3 17.9
simplejson 16.9 19.6
json 16.5 19.4

Reproducing

The above was measured using Python 3.8.2 on Linux (x86_64) with orjson 3.0.0, ujson 2.0.3, python-rapidson 0.9.1, and simplejson 3.17.0.

The latency results can be reproduced using the pybench and graph scripts. The memory results can be reproduced using the pymem script.

Questions

Will it deserialize to dataclasses, UUIDs, decimals, etc or support object_hook?

No. This requires a schema specifying what types are expected and how to handle errors etc. This is addressed by data validation libraries a level above this.

Will it serialize to str?

No. bytes is the correct type for a serialized blob.

Will it support PyPy?

If someone implements it well.

Packaging

To package orjson requires Rust on the nightly channel and the maturin build tool. maturin can be installed from PyPI or packaged as well. maturin can be invoked like:

maturin build --no-sdist --release --strip --manylinux off

Problems with the Rust nightly channel may require pinning a version. nightly-2020-06-09 is known to be ok.

orjson is tested for amd64 and aarch64 on Linux, macOS, and Windows. It may not work on 32-bit targets. It should be compiled with -C target-feature=+sse2 on amd64 and -C target-feature=+neon on arm7. musl libc is not supported, but building with -C target-feature=-crt-static will probably work. The recommended flags are specified in .cargo/config and will apply unless RUSTFLAGS is set.

There are no runtime dependencies other than libc.

orjson's tests are included in the source distribution on PyPI. It is necessarily to install dependencies from PyPI specified in test/requirements.txt. These require a C compiler. The tests do not make network requests.

The tests should be run as part of the build.

License

orjson was written by ijl <ijl@mailbox.org>, copyright 2018 - 2020, licensed under either the Apache 2 or MIT licenses.

Project details


Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

orjson-3.2.0.tar.gz (652.5 kB view details)

Uploaded Source

Built Distributions

If you're not sure about the file name format, learn more about wheel file names.

orjson-3.2.0-cp39-cp39-manylinux2014_x86_64.whl (206.2 kB view details)

Uploaded CPython 3.9

orjson-3.2.0-cp39-cp39-manylinux2014_aarch64.whl (188.6 kB view details)

Uploaded CPython 3.9

orjson-3.2.0-cp38-none-win_amd64.whl (173.1 kB view details)

Uploaded CPython 3.8Windows x86-64

orjson-3.2.0-cp38-cp38-manylinux2014_aarch64.whl (188.6 kB view details)

Uploaded CPython 3.8

orjson-3.2.0-cp38-cp38-manylinux1_x86_64.whl (206.1 kB view details)

Uploaded CPython 3.8

orjson-3.2.0-cp38-cp38-macosx_10_7_x86_64.whl (189.3 kB view details)

Uploaded CPython 3.8macOS 10.7+ x86-64

orjson-3.2.0-cp37-none-win_amd64.whl (173.1 kB view details)

Uploaded CPython 3.7Windows x86-64

orjson-3.2.0-cp37-cp37m-manylinux2014_aarch64.whl (188.6 kB view details)

Uploaded CPython 3.7m

orjson-3.2.0-cp37-cp37m-manylinux1_x86_64.whl (206.2 kB view details)

Uploaded CPython 3.7m

orjson-3.2.0-cp37-cp37m-macosx_10_7_x86_64.whl (189.3 kB view details)

Uploaded CPython 3.7mmacOS 10.7+ x86-64

orjson-3.2.0-cp36-none-win_amd64.whl (173.1 kB view details)

Uploaded CPython 3.6Windows x86-64

orjson-3.2.0-cp36-cp36m-manylinux2014_aarch64.whl (188.6 kB view details)

Uploaded CPython 3.6m

orjson-3.2.0-cp36-cp36m-manylinux1_x86_64.whl (206.2 kB view details)

Uploaded CPython 3.6m

orjson-3.2.0-cp36-cp36m-macosx_10_7_x86_64.whl (189.3 kB view details)

Uploaded CPython 3.6mmacOS 10.7+ x86-64

File details

Details for the file orjson-3.2.0.tar.gz.

File metadata

  • Download URL: orjson-3.2.0.tar.gz
  • Upload date:
  • Size: 652.5 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.2.0 pkginfo/1.5.0.1 requests/2.24.0 setuptools/41.2.0 requests-toolbelt/0.9.1 tqdm/4.47.0 CPython/3.8.3

File hashes

Hashes for orjson-3.2.0.tar.gz
Algorithm Hash digest
SHA256 5602f987e79c84baf1211b843a4227fc92d590b7a136f317462720cff39c678b
MD5 ada3bad50c6f116aae555ba08bc622c4
BLAKE2b-256 1b4da5adfb1f39d1451b0e035341dc45fe604ff6e2691ffb01e8ef7b57708c17

See more details on using hashes here.

File details

Details for the file orjson-3.2.0-cp39-cp39-manylinux2014_x86_64.whl.

File metadata

  • Download URL: orjson-3.2.0-cp39-cp39-manylinux2014_x86_64.whl
  • Upload date:
  • Size: 206.2 kB
  • Tags: CPython 3.9
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.2.0 pkginfo/1.5.0.1 requests/2.24.0 setuptools/47.1.1 requests-toolbelt/0.9.1 tqdm/4.47.0 CPython/3.9.0b3

File hashes

Hashes for orjson-3.2.0-cp39-cp39-manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 caa8b49830da46a239ab4f2dcab9db7614056c7aea01fff3f82520ded946d55d
MD5 475dd486c3e19a39132d72120ccd5dae
BLAKE2b-256 7d0f527ce99b2bdf23fd0bd993253f3fa05653a0fcde25872798ca2c2e2a81f0

See more details on using hashes here.

File details

Details for the file orjson-3.2.0-cp39-cp39-manylinux2014_aarch64.whl.

File metadata

  • Download URL: orjson-3.2.0-cp39-cp39-manylinux2014_aarch64.whl
  • Upload date:
  • Size: 188.6 kB
  • Tags: CPython 3.9
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.2.0 pkginfo/1.5.0.1 requests/2.24.0 setuptools/47.1.1 requests-toolbelt/0.9.1 tqdm/4.47.0 CPython/3.9.0b3

File hashes

Hashes for orjson-3.2.0-cp39-cp39-manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 41c1077af4925e53d4e0ac122c1918856817ec4b2292ff45abd0a3ae82daa1d6
MD5 ef0b90f54d2747f323b599236361770b
BLAKE2b-256 76c30bb40fc12e79397822a0f020f3fc239670945777a5ca371bac197d487fcf

See more details on using hashes here.

File details

Details for the file orjson-3.2.0-cp38-none-win_amd64.whl.

File metadata

  • Download URL: orjson-3.2.0-cp38-none-win_amd64.whl
  • Upload date:
  • Size: 173.1 kB
  • Tags: CPython 3.8, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.2.0 pkginfo/1.5.0.1 requests/2.24.0 setuptools/41.2.0 requests-toolbelt/0.9.1 tqdm/4.47.0 CPython/3.8.3

File hashes

Hashes for orjson-3.2.0-cp38-none-win_amd64.whl
Algorithm Hash digest
SHA256 611a5c6b990679248382a8d249881938789960239eb3489cba64dbfebfcdc30b
MD5 6645acdd71577062783e9bddf10c1a72
BLAKE2b-256 aafeb841fe42f9b09d03914e21a81e78bfd4e5487e72f356ee94e16dd956bb0b

See more details on using hashes here.

File details

Details for the file orjson-3.2.0-cp38-cp38-manylinux2014_aarch64.whl.

File metadata

  • Download URL: orjson-3.2.0-cp38-cp38-manylinux2014_aarch64.whl
  • Upload date:
  • Size: 188.6 kB
  • Tags: CPython 3.8
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.2.0 pkginfo/1.5.0.1 requests/2.24.0 setuptools/47.1.1 requests-toolbelt/0.9.1 tqdm/4.47.0 CPython/3.8.3

File hashes

Hashes for orjson-3.2.0-cp38-cp38-manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 c88fc9a2d9d216c22b642d85f9baad2d96227c16db470d2857e3b209843bd4ed
MD5 3f684526b6871dec06b735ff02790c93
BLAKE2b-256 9357bd3fac26148d792e0144f2a523e7bab66f174706b1505157f19a5942f820

See more details on using hashes here.

File details

Details for the file orjson-3.2.0-cp38-cp38-manylinux1_x86_64.whl.

File metadata

  • Download URL: orjson-3.2.0-cp38-cp38-manylinux1_x86_64.whl
  • Upload date:
  • Size: 206.1 kB
  • Tags: CPython 3.8
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.2.0 pkginfo/1.5.0.1 requests/2.24.0 setuptools/47.1.1 requests-toolbelt/0.9.1 tqdm/4.47.0 CPython/3.8.3

File hashes

Hashes for orjson-3.2.0-cp38-cp38-manylinux1_x86_64.whl
Algorithm Hash digest
SHA256 2f416aca23eb06daf822c743c2fa7c3d9428954b48e0c2b6d945a01686581385
MD5 db5859bf4cdb4871714eef8af136a19b
BLAKE2b-256 e55080f5bcd12745ffe7b3386fe0aef4693ab4ccc7b1a4fc0b1348346e2070f9

See more details on using hashes here.

File details

Details for the file orjson-3.2.0-cp38-cp38-macosx_10_7_x86_64.whl.

File metadata

  • Download URL: orjson-3.2.0-cp38-cp38-macosx_10_7_x86_64.whl
  • Upload date:
  • Size: 189.3 kB
  • Tags: CPython 3.8, macOS 10.7+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.2.0 pkginfo/1.5.0.1 requests/2.24.0 setuptools/41.2.0 requests-toolbelt/0.9.1 tqdm/4.47.0 CPython/3.8.3

File hashes

Hashes for orjson-3.2.0-cp38-cp38-macosx_10_7_x86_64.whl
Algorithm Hash digest
SHA256 6ad7ffcb886e38441fbf34f18ada8c5b13356dd88147dc2ce4d1f3f7ed52a983
MD5 724593750a600a890783ba600f62e876
BLAKE2b-256 44cddf87069ab274a8d56b0b20756b124dbf9db1c6fe4f7f04173f716686b66e

See more details on using hashes here.

File details

Details for the file orjson-3.2.0-cp37-none-win_amd64.whl.

File metadata

  • Download URL: orjson-3.2.0-cp37-none-win_amd64.whl
  • Upload date:
  • Size: 173.1 kB
  • Tags: CPython 3.7, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.2.0 pkginfo/1.5.0.1 requests/2.24.0 setuptools/41.2.0 requests-toolbelt/0.9.1 tqdm/4.47.0 CPython/3.7.7

File hashes

Hashes for orjson-3.2.0-cp37-none-win_amd64.whl
Algorithm Hash digest
SHA256 f98e1151f31eca1cf5cad9a8bee74c2a7fa6d624555abae2a1726bcec558e89e
MD5 860c8cc3a531e74c660ea381a40d8c1e
BLAKE2b-256 dcc4df030e603309c9a3db590de59dd48866b34238b5a9741362ea73176139c4

See more details on using hashes here.

File details

Details for the file orjson-3.2.0-cp37-cp37m-manylinux2014_aarch64.whl.

File metadata

  • Download URL: orjson-3.2.0-cp37-cp37m-manylinux2014_aarch64.whl
  • Upload date:
  • Size: 188.6 kB
  • Tags: CPython 3.7m
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.2.0 pkginfo/1.5.0.1 requests/2.24.0 setuptools/47.1.1 requests-toolbelt/0.9.1 tqdm/4.47.0 CPython/3.7.7

File hashes

Hashes for orjson-3.2.0-cp37-cp37m-manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 a52d46475a3b823bd283a44a277f98c4acdca9f4c770c7dcbf45bba9ee42a3d4
MD5 67a91eb5b320f587d356a5cabc28c082
BLAKE2b-256 45537409ee614076ada4af78e858cfe2582e45f5abc517d1debe21b19d7392ac

See more details on using hashes here.

File details

Details for the file orjson-3.2.0-cp37-cp37m-manylinux1_x86_64.whl.

File metadata

  • Download URL: orjson-3.2.0-cp37-cp37m-manylinux1_x86_64.whl
  • Upload date:
  • Size: 206.2 kB
  • Tags: CPython 3.7m
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.2.0 pkginfo/1.5.0.1 requests/2.24.0 setuptools/47.1.1 requests-toolbelt/0.9.1 tqdm/4.47.0 CPython/3.7.7

File hashes

Hashes for orjson-3.2.0-cp37-cp37m-manylinux1_x86_64.whl
Algorithm Hash digest
SHA256 60fbccbfc8ed96cb67a849312db3c8b786374b0056993f33330f71f250106f32
MD5 7d28274d075b0bb88d3c290549e15958
BLAKE2b-256 e6a24b0c8c977cb7c18d8fccd9c678b9df25be7923b1e257e86ba66fbbfbc16e

See more details on using hashes here.

File details

Details for the file orjson-3.2.0-cp37-cp37m-macosx_10_7_x86_64.whl.

File metadata

  • Download URL: orjson-3.2.0-cp37-cp37m-macosx_10_7_x86_64.whl
  • Upload date:
  • Size: 189.3 kB
  • Tags: CPython 3.7m, macOS 10.7+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.2.0 pkginfo/1.5.0.1 requests/2.24.0 setuptools/41.2.0 requests-toolbelt/0.9.1 tqdm/4.47.0 CPython/3.7.7

File hashes

Hashes for orjson-3.2.0-cp37-cp37m-macosx_10_7_x86_64.whl
Algorithm Hash digest
SHA256 284413943e92904876a4fab4d5415479318c9f7c9bf0e46c019f98571a9d9e47
MD5 1bc35fe65a5c6a7ecd47c3d30c27014d
BLAKE2b-256 29f87b619fcf6b411fa29b2e4fefd6ef56ad5d6183e3ba6e8358f6591537ba86

See more details on using hashes here.

File details

Details for the file orjson-3.2.0-cp36-none-win_amd64.whl.

File metadata

  • Download URL: orjson-3.2.0-cp36-none-win_amd64.whl
  • Upload date:
  • Size: 173.1 kB
  • Tags: CPython 3.6, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.2.0 pkginfo/1.5.0.1 requests/2.24.0 setuptools/40.6.2 requests-toolbelt/0.9.1 tqdm/4.47.0 CPython/3.6.8

File hashes

Hashes for orjson-3.2.0-cp36-none-win_amd64.whl
Algorithm Hash digest
SHA256 0225020aa66001349871967e62e0f38c4f57bfe40f1a62a55f2cd78231b46f51
MD5 25826959f799e3387060feae9cfb3516
BLAKE2b-256 bcd6a363e5d19343371d3439871c800e44b9f190a37bbde63a1a7aea932ac371

See more details on using hashes here.

File details

Details for the file orjson-3.2.0-cp36-cp36m-manylinux2014_aarch64.whl.

File metadata

  • Download URL: orjson-3.2.0-cp36-cp36m-manylinux2014_aarch64.whl
  • Upload date:
  • Size: 188.6 kB
  • Tags: CPython 3.6m
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.2.0 pkginfo/1.5.0.1 requests/2.24.0 setuptools/47.1.1 requests-toolbelt/0.9.1 tqdm/4.47.0 CPython/3.6.10

File hashes

Hashes for orjson-3.2.0-cp36-cp36m-manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 9a52e18e99d730c56b334e41cbaca7cf0b46b6353fc406b0a2f99b12a80248fc
MD5 474ced1533c026e8eda9efe815421a52
BLAKE2b-256 f701c33d279af2dac99190241d6e019ab884866bce4e14fe9957b35a62fac5f9

See more details on using hashes here.

File details

Details for the file orjson-3.2.0-cp36-cp36m-manylinux1_x86_64.whl.

File metadata

  • Download URL: orjson-3.2.0-cp36-cp36m-manylinux1_x86_64.whl
  • Upload date:
  • Size: 206.2 kB
  • Tags: CPython 3.6m
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.2.0 pkginfo/1.5.0.1 requests/2.24.0 setuptools/47.1.1 requests-toolbelt/0.9.1 tqdm/4.47.0 CPython/3.6.10

File hashes

Hashes for orjson-3.2.0-cp36-cp36m-manylinux1_x86_64.whl
Algorithm Hash digest
SHA256 fedbbb53d54780dbd374c027a7db669edf3cf36228a421719e8ea10e9d927fdc
MD5 81902c2153734c9f89356927ee515b7f
BLAKE2b-256 89d0b2b080a1000261f4765e5007537dc809e2c7970f4ed7454daacc7016301c

See more details on using hashes here.

File details

Details for the file orjson-3.2.0-cp36-cp36m-macosx_10_7_x86_64.whl.

File metadata

  • Download URL: orjson-3.2.0-cp36-cp36m-macosx_10_7_x86_64.whl
  • Upload date:
  • Size: 189.3 kB
  • Tags: CPython 3.6m, macOS 10.7+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.2.0 pkginfo/1.5.0.1 requests/2.24.0 setuptools/40.6.2 requests-toolbelt/0.9.1 tqdm/4.47.0 CPython/3.6.10

File hashes

Hashes for orjson-3.2.0-cp36-cp36m-macosx_10_7_x86_64.whl
Algorithm Hash digest
SHA256 ea3891415e5ca266dc2d325dd5a8d9051965b546c09d3b86b760bca3789b6b92
MD5 5a02117556731d908375adf4feae039d
BLAKE2b-256 c2f1a0864c0447bc95efc807150bdedc6cd152febafb6895d41e398d22a66b3f

See more details on using hashes here.

Supported by

AWS Cloud computing and Security Sponsor Datadog Monitoring Depot Continuous Integration Fastly CDN Google Download Analytics Pingdom Monitoring Sentry Error logging StatusPage Status page