Skip to main content

Fast, correct Python msgpack library supporting dataclasses, datetimes, and numpy

Project description

ormsgpack

PyPI PyPI - Downloads

ormsgpack is a fast msgpack library for Python. It is a fork/reboot of orjson It serializes faster than msgpack-python and deserializes a bit slower (right now). It supports serialization of: dataclass, datetime, numpy, pydantic and UUID instances natively.

Its features and drawbacks compared to other Python msgpack libraries:

  • serializes dataclass instances natively.
  • serializes datetime, date, and time instances to RFC 3339 format, e.g., "1970-01-01T00:00:00+00:00"
  • serializes numpy.ndarray instances natively and faster.
  • serializes pydantic.BaseModel instances natively (disregards the configuration ATM).
  • serializes arbitrary types using a default hook

ormsgpack supports CPython 3.6, 3.7, 3.8, 3.9, and 3.10. ormsgpack does not support PyPy. Releases follow semantic versioning and serializing a new object type without an opt-in flag is considered a breaking change.

ormsgpack is licensed under both the Apache 2.0 and MIT licenses. The repository and issue tracker is github.com/aviramha/ormsgpack, and patches may be submitted there. There is a CHANGELOG available in the repository.

  1. Usage
    1. Install
    2. Quickstart
    3. Serialize
      1. default
      2. option
    4. Deserialize
  2. Types
    1. dataclass
    2. datetime
    3. enum
    4. float
    5. int
    6. numpy
    7. uuid
    8. pydantic
  3. Latency
  4. Questions
  5. Packaging
  6. License

Usage

Install

To install a wheel from PyPI:

pip install --upgrade "pip>=19.3" # manylinux2014 support
pip install --upgrade ormsgpack

Notice that Linux environments with a pip version shipped in 2018 or earlier must first upgrade pip to support manylinux2014 wheels.

To build a wheel, see packaging.

Quickstart

This is an example of serializing, with options specified, and deserializing:

>>> import ormsgpack, datetime, numpy
>>> data = {
    "type": "job",
    "created_at": datetime.datetime(1970, 1, 1),
    "status": "🆗",
    "payload": numpy.array([[1, 2], [3, 4]]),
}
>>> ormsgpack.packb(data, option=ormsgpack.OPT_NAIVE_UTC | ormsgpack.OPT_SERIALIZE_NUMPY)
b'\x84\xa4type\xa3job\xaacreated_at\xb91970-01-01T00:00:00+00:00\xa6status\xa4\xf0\x9f\x86\x97\xa7payload\x92\x92\x01\x02\x92\x03\x04'
>>> ormsgpack.unpackb(_)
{'type': 'job', 'created_at': '1970-01-01T00:00:00+00:00', 'status': '🆗', 'payload': [[1, 2], [3, 4]]}

Serialize

def packb(
    __obj: Any,
    default: Optional[Callable[[Any], Any]] = ...,
    option: Optional[int] = ...,
) -> bytes: ...

packb() serializes Python objects to msgpack.

It natively serializes bytes, str, dict, list, tuple, int, float, bool, dataclasses.dataclass, typing.TypedDict, datetime.datetime, datetime.date, datetime.time, uuid.UUID, numpy.ndarray, and None instances. It supports arbitrary types through default. It serializes subclasses of str, int, dict, list, dataclasses.dataclass, and enum.Enum. It does not serialize subclasses of tuple to avoid serializing namedtuple objects as arrays. To avoid serializing subclasses, specify the option ormsgpack.OPT_PASSTHROUGH_SUBCLASS.

The output is a bytes object containing UTF-8.

The global interpreter lock (GIL) is held for the duration of the call.

It raises MsgpackEncodeError on an unsupported type. This exception message describes the invalid object with the error message Type is not JSON serializable: .... To fix this, specify default.

It raises MsgpackEncodeError on a str that contains invalid UTF-8.

It raises MsgpackEncodeError if a dict has a key of a type other than str or bytes, unless OPT_NON_STR_KEYS is specified.

It raises MsgpackEncodeError if the output of default recurses to handling by default more than 254 levels deep.

It raises MsgpackEncodeError on circular references.

It raises MsgpackEncodeError if a tzinfo on a datetime object is unsupported.

MsgpackEncodeError is a subclass of TypeError. This is for compatibility with the standard library.

default

To serialize a subclass or arbitrary types, specify default as a callable that returns a supported type. default may be a function, lambda, or callable class instance. To specify that a type was not handled by default, raise an exception such as TypeError.

>>> import ormsgpack, decimal
>>>
def default(obj):
    if isinstance(obj, decimal.Decimal):
        return str(obj)
    raise TypeError

>>> ormsgpack.packb(decimal.Decimal("0.0842389659712649442845"))
MsgpackEncodeError: Type is not JSON serializable: decimal.Decimal
>>> ormsgpack.packb(decimal.Decimal("0.0842389659712649442845"), default=default)
b'\xb80.0842389659712649442845'
>>> ormsgpack.packb({1, 2}, default=default)
ormsgpack.MsgpackEncodeError: Type is not msgpack serializable: set

The default callable may return an object that itself must be handled by default up to 254 times before an exception is raised.

It is important that default raise an exception if a type cannot be handled. Python otherwise implicitly returns None, which appears to the caller like a legitimate value and is serialized:

>>> import ormsgpack, json, rapidjson
>>>
def default(obj):
    if isinstance(obj, decimal.Decimal):
        return str(obj)

>>> ormsgpack.unpackb(ormsgpack.packb({"set":{1, 2}}, default=default))
{'set': None}

option

To modify how data is serialized, specify option. Each option is an integer constant in ormspgack. To specify multiple options, mask them together, e.g., option=ormspgack.OPT_NON_STR_KEYS | ormspgack.OPT_NAIVE_UTC.

OPT_NAIVE_UTC

Serialize datetime.datetime objects without a tzinfo as UTC. This has no effect on datetime.datetime objects that have tzinfo set.

>>> import ormsgpack, datetime
>>> ormsgpack.unpackb(ormsgpack.packb(
        datetime.datetime(1970, 1, 1, 0, 0, 0),
    ))
"1970-01-01T00:00:00"
>>> ormsgpack.unpackb(ormsgpack.packb(
        datetime.datetime(1970, 1, 1, 0, 0, 0),
        option=ormsgpack.OPT_NAIVE_UTC,
    ))
"1970-01-01T00:00:00+00:00"
OPT_NON_STR_KEYS

Serialize dict keys of type other than str. This allows dict keys to be one of str, int, float, bool, None, datetime.datetime, datetime.date, datetime.time, enum.Enum, and uuid.UUID. For comparison, the standard library serializes str, int, float, bool or None by default.

>>> import ormsgpack, datetime, uuid
>>> ormsgpack.packb(
        {uuid.UUID("7202d115-7ff3-4c81-a7c1-2a1f067b1ece"): [1, 2, 3]},
        option=ormsgpack.OPT_NON_STR_KEYS,
    )
>>> ormsgpack.packb(
        {datetime.datetime(1970, 1, 1, 0, 0, 0): [1, 2, 3]},
        option=ormsgpack.OPT_NON_STR_KEYS | ormsgpack.OPT_NAIVE_UTC,
    )

These types are generally serialized how they would be as values, e.g., datetime.datetime is still an RFC 3339 string and respects options affecting it.

This option has the risk of creating duplicate keys. This is because non-str objects may serialize to the same str as an existing key, e.g., {"1970-01-01T00:00:00+00:00": true, datetime.datetime(1970, 1, 1, 0, 0, 0): false}. The last key to be inserted to the dict will be serialized last and a msgpack deserializer will presumably take the last occurrence of a key (in the above, false). The first value will be lost.

OPT_OMIT_MICROSECONDS

Do not serialize the microsecond field on datetime.datetime and datetime.time instances.

>>> import ormsgpack, datetime
>>> ormsgpack.packb(
        datetime.datetime(1970, 1, 1, 0, 0, 0, 1),
    )
>>> ormsgpack.packb(
        datetime.datetime(1970, 1, 1, 0, 0, 0, 1),
        option=ormsgpack.OPT_OMIT_MICROSECONDS,
    )
OPT_PASSTHROUGH_DATACLASS

Passthrough dataclasses.dataclass instances to default. This allows customizing their output but is much slower.

>>> import ormsgpack, dataclasses
>>>
@dataclasses.dataclass
class User:
    id: str
    name: str
    password: str

def default(obj):
    if isinstance(obj, User):
        return {"id": obj.id, "name": obj.name}
    raise TypeError

>>> ormsgpack.packb(User("3b1", "asd", "zxc"))
b'\x83\xa2id\xa33b1\xa4name\xa3asd\xa8password\xa3zxc'
>>> ormsgpack.packb(User("3b1", "asd", "zxc"), option=ormsgpack.OPT_PASSTHROUGH_DATACLASS)
TypeError: Type is not msgpack serializable: User
>>> ormsgpack.packb(
        User("3b1", "asd", "zxc"),
        option=ormsgpack.OPT_PASSTHROUGH_DATACLASS,
        default=default,
    )
b'\x82\xa2id\xa33b1\xa4name\xa3asd'
OPT_PASSTHROUGH_DATETIME

Passthrough datetime.datetime, datetime.date, and datetime.time instances to default. This allows serializing datetimes to a custom format, e.g., HTTP dates:

>>> import ormsgpack, datetime
>>>
def default(obj):
    if isinstance(obj, datetime.datetime):
        return obj.strftime("%a, %d %b %Y %H:%M:%S GMT")
    raise TypeError

>>> ormsgpack.packb({"created_at": datetime.datetime(1970, 1, 1)})
b'\x81\xaacreated_at\xb31970-01-01T00:00:00'
>>> ormsgpack.packb({"created_at": datetime.datetime(1970, 1, 1)}, option=ormsgpack.OPT_PASSTHROUGH_DATETIME)
TypeError: Type is not msgpack serializable: datetime.datetime
>>> ormsgpack.packb(
        {"created_at": datetime.datetime(1970, 1, 1)},
        option=ormsgpack.OPT_PASSTHROUGH_DATETIME,
        default=default,
    )
b'\x81\xaacreated_at\xbdThu, 01 Jan 1970 00:00:00 GMT'

This does not affect datetimes in dict keys if using OPT_NON_STR_KEYS.

OPT_PASSTHROUGH_SUBCLASS

Passthrough subclasses of builtin types to default.

>>> import ormsgpack
>>>
class Secret(str):
    pass

def default(obj):
    if isinstance(obj, Secret):
        return "******"
    raise TypeError

>>> ormsgpack.packb(Secret("zxc"))
b'\xa3zxc'
>>> ormsgpack.packb(Secret("zxc"), option=ormsgpack.OPT_PASSTHROUGH_SUBCLASS)
TypeError: Type is not msgpack serializable: Secret
>>> ormsgpack.packb(Secret("zxc"), option=ormsgpack.OPT_PASSTHROUGH_SUBCLASS, default=default)
b'\xa6******'

This does not affect serializing subclasses as dict keys if using OPT_NON_STR_KEYS.

OPT_SERIALIZE_NUMPY

Serialize numpy.ndarray instances. For more, see numpy.

OPT_SERIALIZE_PYDANTIC

Serialize pydantic.BaseModel instances. Right now it ignores the config (str transformations), support might be added later.

OPT_UTC_Z

Serialize a UTC timezone on datetime.datetime instances as Z instead of +00:00.

>>> import ormsgpack, datetime
>>> ormsgpack.packb(
        datetime.datetime(1970, 1, 1, 0, 0, 0, tzinfo=datetime.timezone.utc),
    )
b'"1970-01-01T00:00:00+00:00"'
>>> ormsgpack.packb(
        datetime.datetime(1970, 1, 1, 0, 0, 0, tzinfo=datetime.timezone.utc),
        option=ormsgpack.OPT_UTC_Z
    )
b'"1970-01-01T00:00:00Z"'

Deserialize

def unpackb(__obj: Union[bytes, bytearray, memoryview], / , option=None) -> Any: ...

unpackb() deserializes msgpack to Python objects. It deserializes to dict, list, int, float, str, bool, bytes and None objects.

bytes, bytearray, memoryview input are accepted.

ormsgpack maintains a cache of map keys for the duration of the process. This causes a net reduction in memory usage by avoiding duplicate strings. The keys must be at most 64 bytes to be cached and 512 entries are stored.

The global interpreter lock (GIL) is held for the duration of the call.

It raises MsgpackDecodeError if given an invalid type or invalid msgpack.

MsgpackDecodeError is a subclass of ValueError.

option

unpackb() supports the OPT_NON_STR_KEYS option, that is similar to original msgpack's strict_map_keys=False. Be aware that this option is considered unsafe and disabled by default in msgpack due to possibility of HashDoS.

Types

dataclass

ormsgpack serializes instances of dataclasses.dataclass natively. It serializes instances 40-50x as fast as other libraries and avoids a severe slowdown seen in other libraries compared to serializing dict.

It is supported to pass all variants of dataclasses, including dataclasses using __slots__, frozen dataclasses, those with optional or default attributes, and subclasses. There is a performance benefit to not using __slots__.

Dataclasses are serialized as maps, with every attribute serialized and in the order given on class definition:

>>> import dataclasses, ormsgpack, typing

@dataclasses.dataclass
class Member:
    id: int
    active: bool = dataclasses.field(default=False)

@dataclasses.dataclass
class Object:
    id: int
    name: str
    members: typing.List[Member]

>>> ormsgpack.packb(Object(1, "a", [Member(1, True), Member(2)]))
b'\x83\xa2id\x01\xa4name\xa1a\xa7members\x92\x82\xa2id\x01\xa6active\xc3\x82\xa2id\x02\xa6active\xc2'

Users may wish to control how dataclass instances are serialized, e.g., to not serialize an attribute or to change the name of an attribute when serialized. ormsgpack may implement support using the metadata mapping on field attributes, e.g., field(metadata={"json_serialize": False}), if use cases are clear.

Performance

alt text

--------------------------------------------------------------------------------- benchmark 'dataclass': 2 tests --------------------------------------------------------------------------------
Name (time in ms)                 Min                 Max                Mean            StdDev              Median               IQR            Outliers       OPS            Rounds  Iterations
-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------
test_dataclass_ormsgpack       3.4248 (1.0)        7.7949 (1.0)        3.6266 (1.0)      0.3293 (1.0)        3.5815 (1.0)      0.0310 (1.0)          4;34  275.7434 (1.0)         240           1
test_dataclass_msgpack       140.2774 (40.96)    143.6087 (18.42)    141.3847 (38.99)    1.0038 (3.05)     141.1823 (39.42)    0.7304 (23.60)         2;1    7.0729 (0.03)          8           1
-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------

datetime

ormsgpack serializes datetime.datetime objects to RFC 3339 format, e.g., "1970-01-01T00:00:00+00:00". This is a subset of ISO 8601 and compatible with isoformat() in the standard library.

>>> import ormsgpack, datetime, zoneinfo
>>> ormsgpack.packb(
    datetime.datetime(2018, 12, 1, 2, 3, 4, 9, tzinfo=zoneinfo.ZoneInfo('Australia/Adelaide'))
)
>>> ormsgpack.unpackb(_)
"2018-12-01T02:03:04.000009+10:30"
>>> ormsgpack.packb(
    datetime.datetime.fromtimestamp(4123518902).replace(tzinfo=datetime.timezone.utc)
)
>>> ormsgpack.unpackb(_)
"2100-09-01T21:55:02+00:00"
>>> ormsgpack.packb(
    datetime.datetime.fromtimestamp(4123518902)
)
>>> ormsgpack.unpackb(_)
"2100-09-01T21:55:02"

datetime.datetime supports instances with a tzinfo that is None, datetime.timezone.utc, a timezone instance from the python3.9+ zoneinfo module, or a timezone instance from the third-party pendulum, pytz, or dateutil/arrow libraries.

datetime.time objects must not have a tzinfo.

>>> import ormsgpack, datetime
>>> ormsgpack.packb(datetime.time(12, 0, 15, 290))
>>> ormsgpack.unpackb(_)
"12:00:15.000290"

datetime.date objects will always serialize.

>>> import ormsgpack, datetime
>>> ormsgpack.packb(datetime.date(1900, 1, 2))
>>> ormsgpack.unpackb(_)
"1900-01-02"

Errors with tzinfo result in MsgpackEncodeError being raised.

It is faster to have ormsgpack serialize datetime objects than to do so before calling packb(). If using an unsupported type such as pendulum.datetime, use default.

To disable serialization of datetime objects specify the option ormsgpack.OPT_PASSTHROUGH_DATETIME.

To use "Z" suffix instead of "+00:00" to indicate UTC ("Zulu") time, use the option ormsgpack.OPT_UTC_Z.

To assume datetimes without timezone are UTC, se the option ormsgpack.OPT_NAIVE_UTC.

enum

ormsgpack serializes enums natively. Options apply to their values.

>>> import enum, datetime, ormsgpack
>>>
class DatetimeEnum(enum.Enum):
    EPOCH = datetime.datetime(1970, 1, 1, 0, 0, 0)
>>> ormsgpack.packb(DatetimeEnum.EPOCH)
>>> ormsgpack.unpackb(_)
"1970-01-01T00:00:00"
>>> ormsgpack.packb(DatetimeEnum.EPOCH, option=ormsgpack.OPT_NAIVE_UTC)
>>> ormsgpack.unpackb(_)
"1970-01-01T00:00:00+00:00"

Enums with members that are not supported types can be serialized using default:

>>> import enum, ormsgpack
>>>
class Custom:
    def __init__(self, val):
        self.val = val

def default(obj):
    if isinstance(obj, Custom):
        return obj.val
    raise TypeError

class CustomEnum(enum.Enum):
    ONE = Custom(1)

>>> ormsgpack.packb(CustomEnum.ONE, default=default)
>>> ormsgpack.unpackb(_)
1

float

ormsgpack serializes and deserializes double precision floats with no loss of precision and consistent rounding.

int

ormsgpack serializes and deserializes 64-bit integers by default. The range supported is a signed 64-bit integer's minimum (-9223372036854775807) to an unsigned 64-bit integer's maximum (18446744073709551615).

numpy

ormsgpack natively serializes numpy.ndarray and individual numpy.float64, numpy.float32, numpy.int64, numpy.int32, numpy.int8, numpy.uint64, numpy.uint32, and numpy.uint8 instances. Arrays may have a dtype of numpy.bool, numpy.float32, numpy.float64, numpy.int32, numpy.int64, numpy.uint32, numpy.uint64, numpy.uintp, or numpy.intp. ormsgpack is faster than all compared libraries at serializing numpy instances. Serializing numpy data requires specifying option=ormsgpack.OPT_SERIALIZE_NUMPY.

>>> import ormsgpack, numpy
>>> ormsgpack.packb(
        numpy.array([[1, 2, 3], [4, 5, 6]]),
        option=ormsgpack.OPT_SERIALIZE_NUMPY,
)
>>> ormsgpack.unpackb(_)
[[1,2,3],[4,5,6]]

The array must be a contiguous C array (C_CONTIGUOUS) and one of the supported datatypes.

If an array is not a contiguous C array or contains an supported datatype, ormsgpack falls through to default. In default, obj.tolist() can be specified. If an array is malformed, which is not expected, ormsgpack.MsgpackEncodeError is raised.

Performance

alt text alt text alt text alt text alt text

---------------------------------------------------------------------------------- benchmark 'numpy float64': 2 tests ---------------------------------------------------------------------------------
Name (time in ms)                      Min                 Max                Mean             StdDev              Median                IQR            Outliers      OPS            Rounds  Iterations
-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------
test_numpy_ormsgpack[float64]      77.9625 (1.0)       85.2507 (1.0)       79.0326 (1.0)       1.9043 (1.0)       78.5505 (1.0)       0.7408 (1.0)           1;1  12.6530 (1.0)          13           1
test_numpy_msgpack[float64]       511.5176 (6.56)     606.9395 (7.12)     559.0017 (7.07)     44.0661 (23.14)    572.5499 (7.29)     81.2972 (109.75)        3;0   1.7889 (0.14)          5           1
-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------


------------------------------------------------------------------------------------- benchmark 'numpy int32': 2 tests -------------------------------------------------------------------------------------
Name (time in ms)                      Min                   Max                  Mean             StdDev                Median                IQR            Outliers     OPS            Rounds  Iterations
------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------
test_numpy_ormsgpack[int32]       197.8751 (1.0)        210.3111 (1.0)        201.1033 (1.0)       5.1886 (1.0)        198.8518 (1.0)       3.8297 (1.0)           1;1  4.9726 (1.0)           5           1
test_numpy_msgpack[int32]       1,363.8515 (6.89)     1,505.4747 (7.16)     1,428.2127 (7.10)     53.4176 (10.30)    1,425.3516 (7.17)     72.8064 (19.01)         2;0  0.7002 (0.14)          5           1
------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------


-------------------------------------------------------------------------------- benchmark 'numpy int8': 2 tests ---------------------------------------------------------------------------------
Name (time in ms)                   Min                 Max                Mean            StdDev              Median                IQR            Outliers     OPS            Rounds  Iterations
--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------
test_numpy_ormsgpack[int8]     107.8013 (1.0)      113.7336 (1.0)      109.0364 (1.0)      1.7805 (1.0)      108.3574 (1.0)       0.4066 (1.0)           1;2  9.1712 (1.0)          10           1
test_numpy_msgpack[int8]       685.4149 (6.36)     703.2958 (6.18)     693.2396 (6.36)     7.9572 (4.47)     691.5435 (6.38)     14.4142 (35.45)         1;0  1.4425 (0.16)          5           1
--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------


------------------------------------------------------------------------------------- benchmark 'numpy npbool': 2 tests --------------------------------------------------------------------------------------
Name (time in ms)                       Min                   Max                  Mean             StdDev                Median                IQR            Outliers      OPS            Rounds  Iterations
--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------
test_numpy_ormsgpack[npbool]        87.9005 (1.0)         89.5460 (1.0)         88.7928 (1.0)       0.5098 (1.0)         88.8508 (1.0)       0.6609 (1.0)           4;0  11.2622 (1.0)          12           1
test_numpy_msgpack[npbool]       1,095.0599 (12.46)    1,176.3442 (13.14)    1,120.5916 (12.62)    32.9993 (64.73)    1,110.4216 (12.50)    38.4189 (58.13)         1;0   0.8924 (0.08)          5           1
--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------


--------------------------------------------------------------------------------- benchmark 'numpy uint8': 2 tests ---------------------------------------------------------------------------------
Name (time in ms)                    Min                 Max                Mean             StdDev              Median                IQR            Outliers     OPS            Rounds  Iterations
----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------
test_numpy_ormsgpack[uint8]     133.1743 (1.0)      134.7246 (1.0)      134.2793 (1.0)       0.4946 (1.0)      134.3120 (1.0)       0.4492 (1.0)           1;1  7.4472 (1.0)           8           1
test_numpy_msgpack[uint8]       727.1393 (5.46)     824.8247 (6.12)     775.7032 (5.78)     34.9887 (70.73)    775.9595 (5.78)     36.2824 (80.78)         2;0  1.2892 (0.17)          5           1
----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------

uuid

ormsgpack serializes uuid.UUID instances to RFC 4122 format, e.g., "f81d4fae-7dec-11d0-a765-00a0c91e6bf6".

>>> import ormsgpack, uuid
>>> ormsgpack.packb(uuid.UUID('f81d4fae-7dec-11d0-a765-00a0c91e6bf6'))
>>> ormsgpack.unpackb(_)
"f81d4fae-7dec-11d0-a765-00a0c91e6bf6"
>>> ormsgpack.packb(uuid.uuid5(uuid.NAMESPACE_DNS, "python.org"))
>>> ormsgpack.unpackb(_)
"886313e1-3b8a-5372-9b90-0c9aee199e5d"

Pydantic

alt text ormsgpack serializes pydantic.BaseModel instances natively. Currently it ignores pydantic.BaseModel.Config.

Performance

-------------------------------------------------------------------------------- benchmark 'pydantic': 2 tests ---------------------------------------------------------------------------------
Name (time in ms)                Min                 Max                Mean            StdDev              Median               IQR            Outliers       OPS            Rounds  Iterations
------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------
test_pydantic_ormsgpack       4.3918 (1.0)       12.6521 (1.0)        4.8550 (1.0)      1.1455 (3.98)       4.6101 (1.0)      0.0662 (1.0)         11;24  205.9727 (1.0)         204           1
test_pydantic_msgpack       124.5500 (28.36)    125.5427 (9.92)     125.0582 (25.76)    0.2877 (1.0)      125.0855 (27.13)    0.2543 (3.84)          2;0    7.9963 (0.04)          8           1
------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------

Latency

Graphs

alt text alt text alt text alt text alt text alt text alt text alt text

Data

----------------------------------------------------------------------------- benchmark 'canada packb': 2 tests ------------------------------------------------------------------------------
Name (time in ms)                   Min                Max              Mean            StdDev            Median               IQR            Outliers       OPS            Rounds  Iterations
----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------
test_ormsgpack_packb[canada]     3.5302 (1.0)       3.8939 (1.0)      3.7319 (1.0)      0.0563 (1.0)      3.7395 (1.0)      0.0484 (1.0)         56;22  267.9571 (1.0)         241           1
test_msgpack_packb[canada]       8.8642 (2.51)     14.0432 (3.61)     9.3660 (2.51)     0.5649 (10.03)    9.2983 (2.49)     0.0982 (2.03)         3;11  106.7691 (0.40)        106           1
----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------


------------------------------------------------------------------------------- benchmark 'canada unpackb': 2 tests --------------------------------------------------------------------------------
Name (time in ms)                      Min                Max               Mean             StdDev             Median                IQR            Outliers      OPS            Rounds  Iterations
----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------
test_msgpack_unpackb[canada]       10.1176 (1.0)      62.0466 (1.18)     33.4806 (1.0)      18.8279 (1.0)      46.6582 (1.0)      38.5921 (1.02)         30;0  29.8680 (1.0)          67           1
test_ormsgpack_unpackb[canada]     11.3992 (1.13)     52.6587 (1.0)      34.1842 (1.02)     18.9461 (1.01)     47.6456 (1.02)     37.8024 (1.0)           8;0  29.2533 (0.98)         20           1
----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------


----------------------------------------------------------------------------- benchmark 'citm_catalog packb': 2 tests -----------------------------------------------------------------------------
Name (time in ms)                         Min               Max              Mean            StdDev            Median               IQR            Outliers       OPS            Rounds  Iterations
---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------
test_ormsgpack_packb[citm_catalog]     1.8024 (1.0)      2.1259 (1.0)      1.9487 (1.0)      0.0346 (1.0)      1.9525 (1.0)      0.0219 (1.0)         79;60  513.1650 (1.0)         454           1
test_msgpack_packb[citm_catalog]       3.4195 (1.90)     3.8128 (1.79)     3.6928 (1.90)     0.0535 (1.55)     3.7009 (1.90)     0.0250 (1.14)        47;49  270.7958 (0.53)        257           1
---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------


------------------------------------------------------------------------------ benchmark 'citm_catalog unpackb': 2 tests ------------------------------------------------------------------------------
Name (time in ms)                           Min                Max               Mean             StdDev            Median               IQR            Outliers      OPS            Rounds  Iterations
-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------
test_ormsgpack_unpackb[citm_catalog]     5.6986 (1.0)      46.1843 (1.0)      14.2491 (1.0)      15.9791 (1.0)      6.1051 (1.0)      0.3074 (1.0)           5;5  70.1798 (1.0)          23           1
test_msgpack_unpackb[citm_catalog]       7.2600 (1.27)     56.6642 (1.23)     16.4095 (1.15)     16.3257 (1.02)     7.7364 (1.27)     0.4944 (1.61)        28;29  60.9404 (0.87)        125           1
-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------


----------------------------------------------------------------------------------- benchmark 'github packb': 2 tests -----------------------------------------------------------------------------------
Name (time in us)                     Min                 Max                Mean            StdDev              Median               IQR            Outliers  OPS (Kops/s)            Rounds  Iterations
---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------
test_ormsgpack_packb[github]      73.0000 (1.0)      215.9000 (1.0)       80.4826 (1.0)      4.8889 (1.0)       80.3000 (1.0)      1.1000 (1.83)     866;1118       12.4250 (1.0)        6196           1
test_msgpack_packb[github]       103.8000 (1.42)     220.8000 (1.02)     112.8049 (1.40)     4.9686 (1.02)     113.0000 (1.41)     0.6000 (1.0)     1306;1560        8.8649 (0.71)       7028           1
---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------


----------------------------------------------------------------------------------- benchmark 'github unpackb': 2 tests -----------------------------------------------------------------------------------
Name (time in us)                       Min                 Max                Mean            StdDev              Median               IQR            Outliers  OPS (Kops/s)            Rounds  Iterations
-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------
test_ormsgpack_unpackb[github]     201.3000 (1.0)      318.5000 (1.0)      219.0861 (1.0)      6.7340 (1.0)      219.1000 (1.0)      1.2000 (1.0)       483;721        4.5644 (1.0)        3488           1
test_msgpack_unpackb[github]       289.8000 (1.44)     436.0000 (1.37)     314.9631 (1.44)     9.4130 (1.40)     315.1000 (1.44)     2.3000 (1.92)      341;557        3.1750 (0.70)       2477           1
-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------

--------------------------------------------------------------------------------------- benchmark 'twitter packb': 2 tests ---------------------------------------------------------------------------------------
Name (time in us)                        Min                   Max                  Mean             StdDev                Median                IQR            Outliers         OPS            Rounds  Iterations
------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------
test_ormsgpack_packb[twitter]       820.7000 (1.0)      2,945.2000 (2.03)       889.3791 (1.0)      78.4139 (2.43)       884.2000 (1.0)      12.5250 (1.0)          4;76  1,124.3799 (1.0)         809           1
test_msgpack_packb[twitter]       1,209.3000 (1.47)     1,451.2000 (1.0)      1,301.3615 (1.46)     32.2147 (1.0)      1,306.7000 (1.48)     14.1000 (1.13)      118;138    768.4260 (0.68)        592           1
------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------


------------------------------------------------------------------------------ benchmark 'twitter unpackb': 2 tests -----------------------------------------------------------------------------
Name (time in ms)                      Min                Max              Mean            StdDev            Median               IQR            Outliers       OPS            Rounds  Iterations
-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------
test_ormsgpack_unpackb[twitter]     2.7097 (1.0)      41.1530 (1.0)      3.2721 (1.0)      3.5860 (1.03)     2.8868 (1.0)      0.0614 (1.32)         4;38  305.6098 (1.0)         314           1
test_msgpack_unpackb[twitter]       3.8079 (1.41)     42.0617 (1.02)     4.4459 (1.36)     3.4893 (1.0)      4.1097 (1.42)     0.0465 (1.0)          2;54  224.9267 (0.74)        228           1
-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------

Reproducing

The above was measured using Python 3.7.9 on Azure Linux VM (x86_64) with ormsgpack 0.2.1 and msgpack 1.0.2.

The latency results can be reproduced using ./scripts/benchmark.sh and graphs using pytest --benchmark-histogram benchmarks/bench_*.

Questions

Why can't I install it from PyPI?

Probably pip needs to be upgraded. pip added support for manylinux2014 in 2019.

Will it deserialize to dataclasses, UUIDs, decimals, etc or support object_hook?

No. This requires a schema specifying what types are expected and how to handle errors etc. This is addressed by data validation libraries a level above this.

Will it support PyPy?

If someone implements it well.

Packaging

To package ormsgpack requires Rust on the nightly channel and the maturin build tool. maturin can be installed from PyPI or packaged as well. This is the simplest and recommended way of installing from source, assuming rustup is available from a package manager:

rustup default nightly
pip wheel --no-binary=ormsgpack ormsgpack

This is an example of building a wheel using the repository as source, rustup installed from upstream, and a pinned version of Rust:

pip install maturin
curl https://sh.rustup.rs -sSf | sh -s -- --default-toolchain nightly-2021-05-25 --profile minimal -y
maturin build --no-sdist --release --strip --manylinux off
ls -1 target/wheels

Problems with the Rust nightly channel may require pinning a version. nightly-2021-05-25 is known to be ok.

ormsgpack is tested for amd64 and aarch64 on Linux, macOS, and Windows. It may not work on 32-bit targets. It has recommended RUSTFLAGS specified in .cargo/config so it is recommended to either not set RUSTFLAGS or include these options.

There are no runtime dependencies other than libc.

License

orjson was written by ijl <ijl@mailbox.org>, copyright 2018 - 2021, licensed under both the Apache 2 and MIT licenses.

ormsgpack was forked from orjson and is maintained by Aviram Hassan <aviramyhassan@gmail.com>, licensed same as orjson.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

ormsgpack-0.3.1.tar.gz (48.7 kB view details)

Uploaded Source

Built Distributions

ormsgpack-0.3.1-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (181.9 kB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ x86-64

ormsgpack-0.3.1-cp39-none-win_amd64.whl (131.6 kB view details)

Uploaded CPython 3.9 Windows x86-64

ormsgpack-0.3.1-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (181.9 kB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ x86-64

ormsgpack-0.3.1-cp39-cp39-macosx_10_7_x86_64.whl (179.9 kB view details)

Uploaded CPython 3.9 macOS 10.7+ x86-64

ormsgpack-0.3.1-cp38-none-win_amd64.whl (131.6 kB view details)

Uploaded CPython 3.8 Windows x86-64

ormsgpack-0.3.1-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (181.9 kB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ x86-64

ormsgpack-0.3.1-cp38-cp38-macosx_10_7_x86_64.whl (179.9 kB view details)

Uploaded CPython 3.8 macOS 10.7+ x86-64

ormsgpack-0.3.1-cp37-none-win_amd64.whl (131.7 kB view details)

Uploaded CPython 3.7 Windows x86-64

ormsgpack-0.3.1-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (181.9 kB view details)

Uploaded CPython 3.7m manylinux: glibc 2.17+ x86-64

ormsgpack-0.3.1-cp37-cp37m-macosx_10_7_x86_64.whl (180.0 kB view details)

Uploaded CPython 3.7m macOS 10.7+ x86-64

ormsgpack-0.3.1-cp36-none-win_amd64.whl (131.7 kB view details)

Uploaded CPython 3.6 Windows x86-64

ormsgpack-0.3.1-cp36-cp36m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (181.9 kB view details)

Uploaded CPython 3.6m manylinux: glibc 2.17+ x86-64

ormsgpack-0.3.1-cp36-cp36m-macosx_10_7_x86_64.whl (180.0 kB view details)

Uploaded CPython 3.6m macOS 10.7+ x86-64

File details

Details for the file ormsgpack-0.3.1.tar.gz.

File metadata

  • Download URL: ormsgpack-0.3.1.tar.gz
  • Upload date:
  • Size: 48.7 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.1 importlib_metadata/4.5.0 pkginfo/1.7.0 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.61.1 CPython/3.8.10

File hashes

Hashes for ormsgpack-0.3.1.tar.gz
Algorithm Hash digest
SHA256 7df3f914d3fceac96c43e86283bc4d55ea66433c2bcaabfafe5e3cf8ebe2b730
MD5 efb734052b00d2f74ef41051484870f6
BLAKE2b-256 f095dfb8de223f60c4a5753dcb06da7a16388d103b132fac9c2b13bc24d59bb8

See more details on using hashes here.

File details

Details for the file ormsgpack-0.3.1-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for ormsgpack-0.3.1-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 543f8eee26db58746ed5aa3f8c1fc50a16da99244dfb52ed23c901a8a23deda3
MD5 c466aefedb08040ca9018068b5fbfc9c
BLAKE2b-256 82c2a02dffc9a25efac8717fed8009bdf5ed725e812ed71a44e0af668d56b3cd

See more details on using hashes here.

File details

Details for the file ormsgpack-0.3.1-cp39-none-win_amd64.whl.

File metadata

  • Download URL: ormsgpack-0.3.1-cp39-none-win_amd64.whl
  • Upload date:
  • Size: 131.6 kB
  • Tags: CPython 3.9, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.1 importlib_metadata/4.5.0 pkginfo/1.7.0 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.61.1 CPython/3.9.5

File hashes

Hashes for ormsgpack-0.3.1-cp39-none-win_amd64.whl
Algorithm Hash digest
SHA256 e4ffedb22e1f2e7de77352cc8b9cb30563a6cbb54f617c53814557686c3d6089
MD5 76106bfa0c55d6757c486bcc3bb2073f
BLAKE2b-256 41076ebb55b7b7a10dc2f6fd8505d3386ec45c019c9b562d7fdefba4a28aa5ec

See more details on using hashes here.

File details

Details for the file ormsgpack-0.3.1-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for ormsgpack-0.3.1-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 487c61c03ebac2af5f1627bfd9aed7f8f60b90f9da73b6a21fc1707bc3c2fc35
MD5 aadbb41cf6c72cc76b8baebc993bb4ea
BLAKE2b-256 e0b574fbb415aa9f213e0e5f6035426003c3ed65aa22805836724361ed3b0b0c

See more details on using hashes here.

File details

Details for the file ormsgpack-0.3.1-cp39-cp39-macosx_10_7_x86_64.whl.

File metadata

  • Download URL: ormsgpack-0.3.1-cp39-cp39-macosx_10_7_x86_64.whl
  • Upload date:
  • Size: 179.9 kB
  • Tags: CPython 3.9, macOS 10.7+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.1 importlib_metadata/4.5.0 pkginfo/1.7.0 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.61.1 CPython/3.9.5

File hashes

Hashes for ormsgpack-0.3.1-cp39-cp39-macosx_10_7_x86_64.whl
Algorithm Hash digest
SHA256 32c44659992d698f1ddac521c3574baf9f092beaec1b99499f52743a548e77d3
MD5 fff1292b0beb4edaa94fa38a7aa3abee
BLAKE2b-256 67d78c83716f2285122b9b441a88f37f74a7711451898264ba2bf2de1bbe5d82

See more details on using hashes here.

File details

Details for the file ormsgpack-0.3.1-cp38-none-win_amd64.whl.

File metadata

  • Download URL: ormsgpack-0.3.1-cp38-none-win_amd64.whl
  • Upload date:
  • Size: 131.6 kB
  • Tags: CPython 3.8, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.1 importlib_metadata/4.5.0 pkginfo/1.7.0 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.61.1 CPython/3.8.10

File hashes

Hashes for ormsgpack-0.3.1-cp38-none-win_amd64.whl
Algorithm Hash digest
SHA256 ec5b7bce873bc855578921d4b83cc62f7fc0f635bafc5ba9ec3ada7f20dad6c6
MD5 387d2fbbd82709baa623655de5e89b75
BLAKE2b-256 663930c6cb4330e8fce40c02049e517df89b218fd0caff5790a01a6b7c7cce22

See more details on using hashes here.

File details

Details for the file ormsgpack-0.3.1-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for ormsgpack-0.3.1-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 cf7b8bd6ae8675023a42b1c0c0674c12c801b4fd79e15c467f1601c12d846b64
MD5 0b633111b1d0acb1c0534a98d0b49b53
BLAKE2b-256 b41f058ac3a602677c626330eda606ab38e1a53fd7d7711f4d4ad1fb3d2417f8

See more details on using hashes here.

File details

Details for the file ormsgpack-0.3.1-cp38-cp38-macosx_10_7_x86_64.whl.

File metadata

  • Download URL: ormsgpack-0.3.1-cp38-cp38-macosx_10_7_x86_64.whl
  • Upload date:
  • Size: 179.9 kB
  • Tags: CPython 3.8, macOS 10.7+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.1 importlib_metadata/4.5.0 pkginfo/1.7.0 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.61.1 CPython/3.8.10

File hashes

Hashes for ormsgpack-0.3.1-cp38-cp38-macosx_10_7_x86_64.whl
Algorithm Hash digest
SHA256 4ff3176d767476eddc1f95482b124b994346a79c969ba2883a186246e33b4cbc
MD5 7e962ec3900ab21525716dc3e267d205
BLAKE2b-256 e943b3bccbb8ec717aada9c5c35302c222eb9baf0f7d7807f1d1eb223796d142

See more details on using hashes here.

File details

Details for the file ormsgpack-0.3.1-cp37-none-win_amd64.whl.

File metadata

  • Download URL: ormsgpack-0.3.1-cp37-none-win_amd64.whl
  • Upload date:
  • Size: 131.7 kB
  • Tags: CPython 3.7, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.1 importlib_metadata/4.5.0 pkginfo/1.7.0 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.61.1 CPython/3.7.9

File hashes

Hashes for ormsgpack-0.3.1-cp37-none-win_amd64.whl
Algorithm Hash digest
SHA256 edbc2cfb4b85e1edf2462146f7c1f7c92c165dc025254e6cf4c28661ff2b0895
MD5 f21f2057f0a3a121cb13820a944e4b6c
BLAKE2b-256 1ea209f43d40cd8ad31104bdbac355cdb2ac353beaabb861a042f47dada59590

See more details on using hashes here.

File details

Details for the file ormsgpack-0.3.1-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for ormsgpack-0.3.1-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 dc91effba4bc937910e4601fe0a943164c68bf7674aedc5eb22f4ae067fd5fc6
MD5 004fbfbd9ea3c7c605695796eef32cf7
BLAKE2b-256 e73c0706791da356fab8de8fdd7f0015af31044feed621ecc3db44347a60af6b

See more details on using hashes here.

File details

Details for the file ormsgpack-0.3.1-cp37-cp37m-macosx_10_7_x86_64.whl.

File metadata

  • Download URL: ormsgpack-0.3.1-cp37-cp37m-macosx_10_7_x86_64.whl
  • Upload date:
  • Size: 180.0 kB
  • Tags: CPython 3.7m, macOS 10.7+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.1 importlib_metadata/4.5.0 pkginfo/1.7.0 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.61.1 CPython/3.7.10

File hashes

Hashes for ormsgpack-0.3.1-cp37-cp37m-macosx_10_7_x86_64.whl
Algorithm Hash digest
SHA256 182be9e13f2d8e7ed9b4e0acdeb1472e9fc1c2b1d2de157e2a2e842f0618c997
MD5 39d29f213cb95caa59d820890ccdb9c1
BLAKE2b-256 b6851d71278d233b394837828e996afd23c02de7501e9e816f95c7558f23539e

See more details on using hashes here.

File details

Details for the file ormsgpack-0.3.1-cp36-none-win_amd64.whl.

File metadata

  • Download URL: ormsgpack-0.3.1-cp36-none-win_amd64.whl
  • Upload date:
  • Size: 131.7 kB
  • Tags: CPython 3.6, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.1 importlib_metadata/4.5.0 pkginfo/1.7.0 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.61.1 CPython/3.6.8

File hashes

Hashes for ormsgpack-0.3.1-cp36-none-win_amd64.whl
Algorithm Hash digest
SHA256 1f0d8e0922aa185449795d6d559b338cbcddb5a5614bc59d687d6a58b5377db4
MD5 aa8faa062a54cf5654176cdc15efabfb
BLAKE2b-256 b1c19d533bc701a9cd0b53a3be6cdaea846b634a982db78b0ace4e341488a3aa

See more details on using hashes here.

File details

Details for the file ormsgpack-0.3.1-cp36-cp36m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for ormsgpack-0.3.1-cp36-cp36m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 d450c5413ab67b78c5ceca89b9018f04ca98e9b3c069a328188566d9a29b4f4b
MD5 662fa7215ec8f006129dfc20203af590
BLAKE2b-256 f8720076a47657d70584a6850cbb18f0dd394d014820f76e753e13e9c72ab6be

See more details on using hashes here.

File details

Details for the file ormsgpack-0.3.1-cp36-cp36m-macosx_10_7_x86_64.whl.

File metadata

  • Download URL: ormsgpack-0.3.1-cp36-cp36m-macosx_10_7_x86_64.whl
  • Upload date:
  • Size: 180.0 kB
  • Tags: CPython 3.6m, macOS 10.7+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.1 importlib_metadata/4.5.0 pkginfo/1.7.0 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.61.1 CPython/3.6.13

File hashes

Hashes for ormsgpack-0.3.1-cp36-cp36m-macosx_10_7_x86_64.whl
Algorithm Hash digest
SHA256 bd4f1d0eadc87e4ab0fb971cedad0e214cf26b7c88c6d52d051abd2cbac3b179
MD5 b4bd893a678ee5158c44c17072142712
BLAKE2b-256 b99ee67c1600592832cd7d79800ce4543882b1e29daf5f59885c66f82aa3851c

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page