Skip to main content

Fast, correct Python msgpack library supporting dataclasses, datetimes, and numpy

Project description

ormsgpack

PyPI PyPI - Downloads

ormsgpack is a fast msgpack library for Python. It is a fork/reboot of orjson It serializes faster than msgpack-python and deserializes a bit slower (right now). It supports serialization of: dataclass, datetime, numpy, pydantic and UUID instances natively.

Its features and drawbacks compared to other Python msgpack libraries:

  • serializes dataclass instances natively.
  • serializes datetime, date, and time instances to RFC 3339 format, e.g., "1970-01-01T00:00:00+00:00"
  • serializes numpy.ndarray instances natively and faster.
  • serializes pydantic.BaseModel instances natively (disregards the configuration ATM).
  • serializes arbitrary types using a default hook

ormsgpack supports CPython 3.6, 3.7, 3.8, 3.9, and 3.10. ormsgpack does not support PyPy. Releases follow semantic versioning and serializing a new object type without an opt-in flag is considered a breaking change.

ormsgpack is licensed under both the Apache 2.0 and MIT licenses. The repository and issue tracker is github.com/aviramha/ormsgpack, and patches may be submitted there. There is a CHANGELOG available in the repository.

  1. Usage
    1. Install
    2. Quickstart
    3. Serialize
      1. default
      2. option
    4. Deserialize
  2. Types
    1. dataclass
    2. datetime
    3. enum
    4. float
    5. int
    6. numpy
    7. uuid
    8. pydantic
  3. Latency
  4. Questions
  5. Packaging
  6. License

Usage

Install

To install a wheel from PyPI:

pip install --upgrade "pip>=19.3" # manylinux2014 support
pip install --upgrade ormsgpack

Notice that Linux environments with a pip version shipped in 2018 or earlier must first upgrade pip to support manylinux2014 wheels.

To build a wheel, see packaging.

Quickstart

This is an example of serializing, with options specified, and deserializing:

>>> import ormsgpack, datetime, numpy
>>> data = {
    "type": "job",
    "created_at": datetime.datetime(1970, 1, 1),
    "status": "🆗",
    "payload": numpy.array([[1, 2], [3, 4]]),
}
>>> ormsgpack.packb(data, option=ormsgpack.OPT_NAIVE_UTC | ormsgpack.OPT_SERIALIZE_NUMPY)
b'\x84\xa4type\xa3job\xaacreated_at\xb91970-01-01T00:00:00+00:00\xa6status\xa4\xf0\x9f\x86\x97\xa7payload\x92\x92\x01\x02\x92\x03\x04'
>>> ormsgpack.unpackb(_)
{'type': 'job', 'created_at': '1970-01-01T00:00:00+00:00', 'status': '🆗', 'payload': [[1, 2], [3, 4]]}

Serialize

def packb(
    __obj: Any,
    default: Optional[Callable[[Any], Any]] = ...,
    option: Optional[int] = ...,
) -> bytes: ...

packb() serializes Python objects to msgpack.

It natively serializes bytes, str, dict, list, tuple, int, float, bool, dataclasses.dataclass, typing.TypedDict, datetime.datetime, datetime.date, datetime.time, uuid.UUID, numpy.ndarray, and None instances. It supports arbitrary types through default. It serializes subclasses of str, int, dict, list, dataclasses.dataclass, and enum.Enum. It does not serialize subclasses of tuple to avoid serializing namedtuple objects as arrays. To avoid serializing subclasses, specify the option ormsgpack.OPT_PASSTHROUGH_SUBCLASS.

The output is a bytes object containing UTF-8.

The global interpreter lock (GIL) is held for the duration of the call.

It raises MsgpackEncodeError on an unsupported type. This exception message describes the invalid object with the error message Type is not JSON serializable: .... To fix this, specify default.

It raises MsgpackEncodeError on a str that contains invalid UTF-8.

It raises MsgpackEncodeError if a dict has a key of a type other than str or bytes, unless OPT_NON_STR_KEYS is specified.

It raises MsgpackEncodeError if the output of default recurses to handling by default more than 254 levels deep.

It raises MsgpackEncodeError on circular references.

It raises MsgpackEncodeError if a tzinfo on a datetime object is unsupported.

MsgpackEncodeError is a subclass of TypeError. This is for compatibility with the standard library.

default

To serialize a subclass or arbitrary types, specify default as a callable that returns a supported type. default may be a function, lambda, or callable class instance. To specify that a type was not handled by default, raise an exception such as TypeError.

>>> import ormsgpack, decimal
>>>
def default(obj):
    if isinstance(obj, decimal.Decimal):
        return str(obj)
    raise TypeError

>>> ormsgpack.packb(decimal.Decimal("0.0842389659712649442845"))
MsgpackEncodeError: Type is not JSON serializable: decimal.Decimal
>>> ormsgpack.packb(decimal.Decimal("0.0842389659712649442845"), default=default)
b'\xb80.0842389659712649442845'
>>> ormsgpack.packb({1, 2}, default=default)
ormsgpack.MsgpackEncodeError: Type is not msgpack serializable: set

The default callable may return an object that itself must be handled by default up to 254 times before an exception is raised.

It is important that default raise an exception if a type cannot be handled. Python otherwise implicitly returns None, which appears to the caller like a legitimate value and is serialized:

>>> import ormsgpack, json, rapidjson
>>>
def default(obj):
    if isinstance(obj, decimal.Decimal):
        return str(obj)

>>> ormsgpack.unpackb(ormsgpack.packb({"set":{1, 2}}, default=default))
{'set': None}

option

To modify how data is serialized, specify option. Each option is an integer constant in ormspgack. To specify multiple options, mask them together, e.g., option=ormspgack.OPT_NON_STR_KEYS | ormspgack.OPT_NAIVE_UTC.

OPT_NAIVE_UTC

Serialize datetime.datetime objects without a tzinfo as UTC. This has no effect on datetime.datetime objects that have tzinfo set.

>>> import ormsgpack, datetime
>>> ormsgpack.unpackb(ormsgpack.packb(
        datetime.datetime(1970, 1, 1, 0, 0, 0),
    ))
"1970-01-01T00:00:00"
>>> ormsgpack.unpackb(ormsgpack.packb(
        datetime.datetime(1970, 1, 1, 0, 0, 0),
        option=ormsgpack.OPT_NAIVE_UTC,
    ))
"1970-01-01T00:00:00+00:00"
OPT_NON_STR_KEYS

Serialize dict keys of type other than str. This allows dict keys to be one of str, int, float, bool, None, datetime.datetime, datetime.date, datetime.time, enum.Enum, and uuid.UUID. For comparison, the standard library serializes str, int, float, bool or None by default.

>>> import ormsgpack, datetime, uuid
>>> ormsgpack.packb(
        {uuid.UUID("7202d115-7ff3-4c81-a7c1-2a1f067b1ece"): [1, 2, 3]},
        option=ormsgpack.OPT_NON_STR_KEYS,
    )
>>> ormsgpack.packb(
        {datetime.datetime(1970, 1, 1, 0, 0, 0): [1, 2, 3]},
        option=ormsgpack.OPT_NON_STR_KEYS | ormsgpack.OPT_NAIVE_UTC,
    )

These types are generally serialized how they would be as values, e.g., datetime.datetime is still an RFC 3339 string and respects options affecting it.

This option has the risk of creating duplicate keys. This is because non-str objects may serialize to the same str as an existing key, e.g., {"1970-01-01T00:00:00+00:00": true, datetime.datetime(1970, 1, 1, 0, 0, 0): false}. The last key to be inserted to the dict will be serialized last and a msgpack deserializer will presumably take the last occurrence of a key (in the above, false). The first value will be lost.

OPT_OMIT_MICROSECONDS

Do not serialize the microsecond field on datetime.datetime and datetime.time instances.

>>> import ormsgpack, datetime
>>> ormsgpack.packb(
        datetime.datetime(1970, 1, 1, 0, 0, 0, 1),
    )
>>> ormsgpack.packb(
        datetime.datetime(1970, 1, 1, 0, 0, 0, 1),
        option=ormsgpack.OPT_OMIT_MICROSECONDS,
    )
OPT_PASSTHROUGH_DATACLASS

Passthrough dataclasses.dataclass instances to default. This allows customizing their output but is much slower.

>>> import ormsgpack, dataclasses
>>>
@dataclasses.dataclass
class User:
    id: str
    name: str
    password: str

def default(obj):
    if isinstance(obj, User):
        return {"id": obj.id, "name": obj.name}
    raise TypeError

>>> ormsgpack.packb(User("3b1", "asd", "zxc"))
b'\x83\xa2id\xa33b1\xa4name\xa3asd\xa8password\xa3zxc'
>>> ormsgpack.packb(User("3b1", "asd", "zxc"), option=ormsgpack.OPT_PASSTHROUGH_DATACLASS)
TypeError: Type is not msgpack serializable: User
>>> ormsgpack.packb(
        User("3b1", "asd", "zxc"),
        option=ormsgpack.OPT_PASSTHROUGH_DATACLASS,
        default=default,
    )
b'\x82\xa2id\xa33b1\xa4name\xa3asd'
OPT_PASSTHROUGH_DATETIME

Passthrough datetime.datetime, datetime.date, and datetime.time instances to default. This allows serializing datetimes to a custom format, e.g., HTTP dates:

>>> import ormsgpack, datetime
>>>
def default(obj):
    if isinstance(obj, datetime.datetime):
        return obj.strftime("%a, %d %b %Y %H:%M:%S GMT")
    raise TypeError

>>> ormsgpack.packb({"created_at": datetime.datetime(1970, 1, 1)})
b'\x81\xaacreated_at\xb31970-01-01T00:00:00'
>>> ormsgpack.packb({"created_at": datetime.datetime(1970, 1, 1)}, option=ormsgpack.OPT_PASSTHROUGH_DATETIME)
TypeError: Type is not msgpack serializable: datetime.datetime
>>> ormsgpack.packb(
        {"created_at": datetime.datetime(1970, 1, 1)},
        option=ormsgpack.OPT_PASSTHROUGH_DATETIME,
        default=default,
    )
b'\x81\xaacreated_at\xbdThu, 01 Jan 1970 00:00:00 GMT'

This does not affect datetimes in dict keys if using OPT_NON_STR_KEYS.

OPT_PASSTHROUGH_SUBCLASS

Passthrough subclasses of builtin types to default.

>>> import ormsgpack
>>>
class Secret(str):
    pass

def default(obj):
    if isinstance(obj, Secret):
        return "******"
    raise TypeError

>>> ormsgpack.packb(Secret("zxc"))
b'\xa3zxc'
>>> ormsgpack.packb(Secret("zxc"), option=ormsgpack.OPT_PASSTHROUGH_SUBCLASS)
TypeError: Type is not msgpack serializable: Secret
>>> ormsgpack.packb(Secret("zxc"), option=ormsgpack.OPT_PASSTHROUGH_SUBCLASS, default=default)
b'\xa6******'

This does not affect serializing subclasses as dict keys if using OPT_NON_STR_KEYS.

OPT_SERIALIZE_NUMPY

Serialize numpy.ndarray instances. For more, see numpy.

OPT_SERIALIZE_PYDANTIC

Serialize pydantic.BaseModel instances. Right now it ignores the config (str transformations), support might be added later.

OPT_UTC_Z

Serialize a UTC timezone on datetime.datetime instances as Z instead of +00:00.

>>> import ormsgpack, datetime
>>> ormsgpack.packb(
        datetime.datetime(1970, 1, 1, 0, 0, 0, tzinfo=datetime.timezone.utc),
    )
b'"1970-01-01T00:00:00+00:00"'
>>> ormsgpack.packb(
        datetime.datetime(1970, 1, 1, 0, 0, 0, tzinfo=datetime.timezone.utc),
        option=ormsgpack.OPT_UTC_Z
    )
b'"1970-01-01T00:00:00Z"'

Deserialize

def unpackb(__obj: Union[bytes, bytearray, memoryview], / , option=None) -> Any: ...

unpackb() deserializes msgpack to Python objects. It deserializes to dict, list, int, float, str, bool, bytes and None objects.

bytes, bytearray, memoryview input are accepted.

ormsgpack maintains a cache of map keys for the duration of the process. This causes a net reduction in memory usage by avoiding duplicate strings. The keys must be at most 64 bytes to be cached and 512 entries are stored.

The global interpreter lock (GIL) is held for the duration of the call.

It raises MsgpackDecodeError if given an invalid type or invalid msgpack.

MsgpackDecodeError is a subclass of ValueError.

option

unpackb() supports the OPT_NON_STR_KEYS option, that is similar to original msgpack's strict_map_keys=False. Be aware that this option is considered unsafe and disabled by default in msgpack due to possibility of HashDoS.

Types

dataclass

ormsgpack serializes instances of dataclasses.dataclass natively. It serializes instances 40-50x as fast as other libraries and avoids a severe slowdown seen in other libraries compared to serializing dict.

It is supported to pass all variants of dataclasses, including dataclasses using __slots__, frozen dataclasses, those with optional or default attributes, and subclasses. There is a performance benefit to not using __slots__.

Dataclasses are serialized as maps, with every attribute serialized and in the order given on class definition:

>>> import dataclasses, ormsgpack, typing

@dataclasses.dataclass
class Member:
    id: int
    active: bool = dataclasses.field(default=False)

@dataclasses.dataclass
class Object:
    id: int
    name: str
    members: typing.List[Member]

>>> ormsgpack.packb(Object(1, "a", [Member(1, True), Member(2)]))
b'\x83\xa2id\x01\xa4name\xa1a\xa7members\x92\x82\xa2id\x01\xa6active\xc3\x82\xa2id\x02\xa6active\xc2'

Users may wish to control how dataclass instances are serialized, e.g., to not serialize an attribute or to change the name of an attribute when serialized. ormsgpack may implement support using the metadata mapping on field attributes, e.g., field(metadata={"json_serialize": False}), if use cases are clear.

Performance

alt text

--------------------------------------------------------------------------------- benchmark 'dataclass': 2 tests --------------------------------------------------------------------------------
Name (time in ms)                 Min                 Max                Mean            StdDev              Median               IQR            Outliers       OPS            Rounds  Iterations
-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------
test_dataclass_ormsgpack       3.4248 (1.0)        7.7949 (1.0)        3.6266 (1.0)      0.3293 (1.0)        3.5815 (1.0)      0.0310 (1.0)          4;34  275.7434 (1.0)         240           1
test_dataclass_msgpack       140.2774 (40.96)    143.6087 (18.42)    141.3847 (38.99)    1.0038 (3.05)     141.1823 (39.42)    0.7304 (23.60)         2;1    7.0729 (0.03)          8           1
-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------

datetime

ormsgpack serializes datetime.datetime objects to RFC 3339 format, e.g., "1970-01-01T00:00:00+00:00". This is a subset of ISO 8601 and compatible with isoformat() in the standard library.

>>> import ormsgpack, datetime, zoneinfo
>>> ormsgpack.packb(
    datetime.datetime(2018, 12, 1, 2, 3, 4, 9, tzinfo=zoneinfo.ZoneInfo('Australia/Adelaide'))
)
>>> ormsgpack.unpackb(_)
"2018-12-01T02:03:04.000009+10:30"
>>> ormsgpack.packb(
    datetime.datetime.fromtimestamp(4123518902).replace(tzinfo=datetime.timezone.utc)
)
>>> ormsgpack.unpackb(_)
"2100-09-01T21:55:02+00:00"
>>> ormsgpack.packb(
    datetime.datetime.fromtimestamp(4123518902)
)
>>> ormsgpack.unpackb(_)
"2100-09-01T21:55:02"

datetime.datetime supports instances with a tzinfo that is None, datetime.timezone.utc, a timezone instance from the python3.9+ zoneinfo module, or a timezone instance from the third-party pendulum, pytz, or dateutil/arrow libraries.

datetime.time objects must not have a tzinfo.

>>> import ormsgpack, datetime
>>> ormsgpack.packb(datetime.time(12, 0, 15, 290))
>>> ormsgpack.unpackb(_)
"12:00:15.000290"

datetime.date objects will always serialize.

>>> import ormsgpack, datetime
>>> ormsgpack.packb(datetime.date(1900, 1, 2))
>>> ormsgpack.unpackb(_)
"1900-01-02"

Errors with tzinfo result in MsgpackEncodeError being raised.

It is faster to have ormsgpack serialize datetime objects than to do so before calling packb(). If using an unsupported type such as pendulum.datetime, use default.

To disable serialization of datetime objects specify the option ormsgpack.OPT_PASSTHROUGH_DATETIME.

To use "Z" suffix instead of "+00:00" to indicate UTC ("Zulu") time, use the option ormsgpack.OPT_UTC_Z.

To assume datetimes without timezone are UTC, se the option ormsgpack.OPT_NAIVE_UTC.

enum

ormsgpack serializes enums natively. Options apply to their values.

>>> import enum, datetime, ormsgpack
>>>
class DatetimeEnum(enum.Enum):
    EPOCH = datetime.datetime(1970, 1, 1, 0, 0, 0)
>>> ormsgpack.packb(DatetimeEnum.EPOCH)
>>> ormsgpack.unpackb(_)
"1970-01-01T00:00:00"
>>> ormsgpack.packb(DatetimeEnum.EPOCH, option=ormsgpack.OPT_NAIVE_UTC)
>>> ormsgpack.unpackb(_)
"1970-01-01T00:00:00+00:00"

Enums with members that are not supported types can be serialized using default:

>>> import enum, ormsgpack
>>>
class Custom:
    def __init__(self, val):
        self.val = val

def default(obj):
    if isinstance(obj, Custom):
        return obj.val
    raise TypeError

class CustomEnum(enum.Enum):
    ONE = Custom(1)

>>> ormsgpack.packb(CustomEnum.ONE, default=default)
>>> ormsgpack.unpackb(_)
1

float

ormsgpack serializes and deserializes double precision floats with no loss of precision and consistent rounding.

int

ormsgpack serializes and deserializes 64-bit integers by default. The range supported is a signed 64-bit integer's minimum (-9223372036854775807) to an unsigned 64-bit integer's maximum (18446744073709551615).

numpy

ormsgpack natively serializes numpy.ndarray and individual numpy.float64, numpy.float32, numpy.int64, numpy.int32, numpy.int8, numpy.uint64, numpy.uint32, and numpy.uint8 instances. Arrays may have a dtype of numpy.bool, numpy.float32, numpy.float64, numpy.int32, numpy.int64, numpy.uint32, numpy.uint64, numpy.uintp, or numpy.intp. ormsgpack is faster than all compared libraries at serializing numpy instances. Serializing numpy data requires specifying option=ormsgpack.OPT_SERIALIZE_NUMPY.

>>> import ormsgpack, numpy
>>> ormsgpack.packb(
        numpy.array([[1, 2, 3], [4, 5, 6]]),
        option=ormsgpack.OPT_SERIALIZE_NUMPY,
)
>>> ormsgpack.unpackb(_)
[[1,2,3],[4,5,6]]

The array must be a contiguous C array (C_CONTIGUOUS) and one of the supported datatypes.

If an array is not a contiguous C array or contains an supported datatype, ormsgpack falls through to default. In default, obj.tolist() can be specified. If an array is malformed, which is not expected, ormsgpack.MsgpackEncodeError is raised.

Performance

alt text alt text alt text alt text alt text

---------------------------------------------------------------------------------- benchmark 'numpy float64': 2 tests ---------------------------------------------------------------------------------
Name (time in ms)                      Min                 Max                Mean             StdDev              Median                IQR            Outliers      OPS            Rounds  Iterations
-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------
test_numpy_ormsgpack[float64]      77.9625 (1.0)       85.2507 (1.0)       79.0326 (1.0)       1.9043 (1.0)       78.5505 (1.0)       0.7408 (1.0)           1;1  12.6530 (1.0)          13           1
test_numpy_msgpack[float64]       511.5176 (6.56)     606.9395 (7.12)     559.0017 (7.07)     44.0661 (23.14)    572.5499 (7.29)     81.2972 (109.75)        3;0   1.7889 (0.14)          5           1
-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------


------------------------------------------------------------------------------------- benchmark 'numpy int32': 2 tests -------------------------------------------------------------------------------------
Name (time in ms)                      Min                   Max                  Mean             StdDev                Median                IQR            Outliers     OPS            Rounds  Iterations
------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------
test_numpy_ormsgpack[int32]       197.8751 (1.0)        210.3111 (1.0)        201.1033 (1.0)       5.1886 (1.0)        198.8518 (1.0)       3.8297 (1.0)           1;1  4.9726 (1.0)           5           1
test_numpy_msgpack[int32]       1,363.8515 (6.89)     1,505.4747 (7.16)     1,428.2127 (7.10)     53.4176 (10.30)    1,425.3516 (7.17)     72.8064 (19.01)         2;0  0.7002 (0.14)          5           1
------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------


-------------------------------------------------------------------------------- benchmark 'numpy int8': 2 tests ---------------------------------------------------------------------------------
Name (time in ms)                   Min                 Max                Mean            StdDev              Median                IQR            Outliers     OPS            Rounds  Iterations
--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------
test_numpy_ormsgpack[int8]     107.8013 (1.0)      113.7336 (1.0)      109.0364 (1.0)      1.7805 (1.0)      108.3574 (1.0)       0.4066 (1.0)           1;2  9.1712 (1.0)          10           1
test_numpy_msgpack[int8]       685.4149 (6.36)     703.2958 (6.18)     693.2396 (6.36)     7.9572 (4.47)     691.5435 (6.38)     14.4142 (35.45)         1;0  1.4425 (0.16)          5           1
--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------


------------------------------------------------------------------------------------- benchmark 'numpy npbool': 2 tests --------------------------------------------------------------------------------------
Name (time in ms)                       Min                   Max                  Mean             StdDev                Median                IQR            Outliers      OPS            Rounds  Iterations
--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------
test_numpy_ormsgpack[npbool]        87.9005 (1.0)         89.5460 (1.0)         88.7928 (1.0)       0.5098 (1.0)         88.8508 (1.0)       0.6609 (1.0)           4;0  11.2622 (1.0)          12           1
test_numpy_msgpack[npbool]       1,095.0599 (12.46)    1,176.3442 (13.14)    1,120.5916 (12.62)    32.9993 (64.73)    1,110.4216 (12.50)    38.4189 (58.13)         1;0   0.8924 (0.08)          5           1
--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------


--------------------------------------------------------------------------------- benchmark 'numpy uint8': 2 tests ---------------------------------------------------------------------------------
Name (time in ms)                    Min                 Max                Mean             StdDev              Median                IQR            Outliers     OPS            Rounds  Iterations
----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------
test_numpy_ormsgpack[uint8]     133.1743 (1.0)      134.7246 (1.0)      134.2793 (1.0)       0.4946 (1.0)      134.3120 (1.0)       0.4492 (1.0)           1;1  7.4472 (1.0)           8           1
test_numpy_msgpack[uint8]       727.1393 (5.46)     824.8247 (6.12)     775.7032 (5.78)     34.9887 (70.73)    775.9595 (5.78)     36.2824 (80.78)         2;0  1.2892 (0.17)          5           1
----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------

uuid

ormsgpack serializes uuid.UUID instances to RFC 4122 format, e.g., "f81d4fae-7dec-11d0-a765-00a0c91e6bf6".

>>> import ormsgpack, uuid
>>> ormsgpack.packb(uuid.UUID('f81d4fae-7dec-11d0-a765-00a0c91e6bf6'))
>>> ormsgpack.unpackb(_)
"f81d4fae-7dec-11d0-a765-00a0c91e6bf6"
>>> ormsgpack.packb(uuid.uuid5(uuid.NAMESPACE_DNS, "python.org"))
>>> ormsgpack.unpackb(_)
"886313e1-3b8a-5372-9b90-0c9aee199e5d"

Pydantic

alt text ormsgpack serializes pydantic.BaseModel instances natively. Currently it ignores pydantic.BaseModel.Config.

Performance

-------------------------------------------------------------------------------- benchmark 'pydantic': 2 tests ---------------------------------------------------------------------------------
Name (time in ms)                Min                 Max                Mean            StdDev              Median               IQR            Outliers       OPS            Rounds  Iterations
------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------
test_pydantic_ormsgpack       4.3918 (1.0)       12.6521 (1.0)        4.8550 (1.0)      1.1455 (3.98)       4.6101 (1.0)      0.0662 (1.0)         11;24  205.9727 (1.0)         204           1
test_pydantic_msgpack       124.5500 (28.36)    125.5427 (9.92)     125.0582 (25.76)    0.2877 (1.0)      125.0855 (27.13)    0.2543 (3.84)          2;0    7.9963 (0.04)          8           1
------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------

Latency

Graphs

alt text alt text alt text alt text alt text alt text alt text alt text

Data

----------------------------------------------------------------------------- benchmark 'canada packb': 2 tests ------------------------------------------------------------------------------
Name (time in ms)                   Min                Max              Mean            StdDev            Median               IQR            Outliers       OPS            Rounds  Iterations
----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------
test_ormsgpack_packb[canada]     3.5302 (1.0)       3.8939 (1.0)      3.7319 (1.0)      0.0563 (1.0)      3.7395 (1.0)      0.0484 (1.0)         56;22  267.9571 (1.0)         241           1
test_msgpack_packb[canada]       8.8642 (2.51)     14.0432 (3.61)     9.3660 (2.51)     0.5649 (10.03)    9.2983 (2.49)     0.0982 (2.03)         3;11  106.7691 (0.40)        106           1
----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------


------------------------------------------------------------------------------- benchmark 'canada unpackb': 2 tests --------------------------------------------------------------------------------
Name (time in ms)                      Min                Max               Mean             StdDev             Median                IQR            Outliers      OPS            Rounds  Iterations
----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------
test_msgpack_unpackb[canada]       10.1176 (1.0)      62.0466 (1.18)     33.4806 (1.0)      18.8279 (1.0)      46.6582 (1.0)      38.5921 (1.02)         30;0  29.8680 (1.0)          67           1
test_ormsgpack_unpackb[canada]     11.3992 (1.13)     52.6587 (1.0)      34.1842 (1.02)     18.9461 (1.01)     47.6456 (1.02)     37.8024 (1.0)           8;0  29.2533 (0.98)         20           1
----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------


----------------------------------------------------------------------------- benchmark 'citm_catalog packb': 2 tests -----------------------------------------------------------------------------
Name (time in ms)                         Min               Max              Mean            StdDev            Median               IQR            Outliers       OPS            Rounds  Iterations
---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------
test_ormsgpack_packb[citm_catalog]     1.8024 (1.0)      2.1259 (1.0)      1.9487 (1.0)      0.0346 (1.0)      1.9525 (1.0)      0.0219 (1.0)         79;60  513.1650 (1.0)         454           1
test_msgpack_packb[citm_catalog]       3.4195 (1.90)     3.8128 (1.79)     3.6928 (1.90)     0.0535 (1.55)     3.7009 (1.90)     0.0250 (1.14)        47;49  270.7958 (0.53)        257           1
---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------


------------------------------------------------------------------------------ benchmark 'citm_catalog unpackb': 2 tests ------------------------------------------------------------------------------
Name (time in ms)                           Min                Max               Mean             StdDev            Median               IQR            Outliers      OPS            Rounds  Iterations
-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------
test_ormsgpack_unpackb[citm_catalog]     5.6986 (1.0)      46.1843 (1.0)      14.2491 (1.0)      15.9791 (1.0)      6.1051 (1.0)      0.3074 (1.0)           5;5  70.1798 (1.0)          23           1
test_msgpack_unpackb[citm_catalog]       7.2600 (1.27)     56.6642 (1.23)     16.4095 (1.15)     16.3257 (1.02)     7.7364 (1.27)     0.4944 (1.61)        28;29  60.9404 (0.87)        125           1
-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------


----------------------------------------------------------------------------------- benchmark 'github packb': 2 tests -----------------------------------------------------------------------------------
Name (time in us)                     Min                 Max                Mean            StdDev              Median               IQR            Outliers  OPS (Kops/s)            Rounds  Iterations
---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------
test_ormsgpack_packb[github]      73.0000 (1.0)      215.9000 (1.0)       80.4826 (1.0)      4.8889 (1.0)       80.3000 (1.0)      1.1000 (1.83)     866;1118       12.4250 (1.0)        6196           1
test_msgpack_packb[github]       103.8000 (1.42)     220.8000 (1.02)     112.8049 (1.40)     4.9686 (1.02)     113.0000 (1.41)     0.6000 (1.0)     1306;1560        8.8649 (0.71)       7028           1
---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------


----------------------------------------------------------------------------------- benchmark 'github unpackb': 2 tests -----------------------------------------------------------------------------------
Name (time in us)                       Min                 Max                Mean            StdDev              Median               IQR            Outliers  OPS (Kops/s)            Rounds  Iterations
-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------
test_ormsgpack_unpackb[github]     201.3000 (1.0)      318.5000 (1.0)      219.0861 (1.0)      6.7340 (1.0)      219.1000 (1.0)      1.2000 (1.0)       483;721        4.5644 (1.0)        3488           1
test_msgpack_unpackb[github]       289.8000 (1.44)     436.0000 (1.37)     314.9631 (1.44)     9.4130 (1.40)     315.1000 (1.44)     2.3000 (1.92)      341;557        3.1750 (0.70)       2477           1
-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------

--------------------------------------------------------------------------------------- benchmark 'twitter packb': 2 tests ---------------------------------------------------------------------------------------
Name (time in us)                        Min                   Max                  Mean             StdDev                Median                IQR            Outliers         OPS            Rounds  Iterations
------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------
test_ormsgpack_packb[twitter]       820.7000 (1.0)      2,945.2000 (2.03)       889.3791 (1.0)      78.4139 (2.43)       884.2000 (1.0)      12.5250 (1.0)          4;76  1,124.3799 (1.0)         809           1
test_msgpack_packb[twitter]       1,209.3000 (1.47)     1,451.2000 (1.0)      1,301.3615 (1.46)     32.2147 (1.0)      1,306.7000 (1.48)     14.1000 (1.13)      118;138    768.4260 (0.68)        592           1
------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------


------------------------------------------------------------------------------ benchmark 'twitter unpackb': 2 tests -----------------------------------------------------------------------------
Name (time in ms)                      Min                Max              Mean            StdDev            Median               IQR            Outliers       OPS            Rounds  Iterations
-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------
test_ormsgpack_unpackb[twitter]     2.7097 (1.0)      41.1530 (1.0)      3.2721 (1.0)      3.5860 (1.03)     2.8868 (1.0)      0.0614 (1.32)         4;38  305.6098 (1.0)         314           1
test_msgpack_unpackb[twitter]       3.8079 (1.41)     42.0617 (1.02)     4.4459 (1.36)     3.4893 (1.0)      4.1097 (1.42)     0.0465 (1.0)          2;54  224.9267 (0.74)        228           1
-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------

Reproducing

The above was measured using Python 3.7.9 on Azure Linux VM (x86_64) with ormsgpack 0.2.1 and msgpack 1.0.2.

The latency results can be reproduced using ./scripts/benchmark.sh and graphs using pytest --benchmark-histogram benchmarks/bench_*.

Questions

Why can't I install it from PyPI?

Probably pip needs to be upgraded. pip added support for manylinux2014 in 2019.

Will it deserialize to dataclasses, UUIDs, decimals, etc or support object_hook?

No. This requires a schema specifying what types are expected and how to handle errors etc. This is addressed by data validation libraries a level above this.

Will it support PyPy?

If someone implements it well.

Packaging

To package ormsgpack requires Rust on the nightly channel and the maturin build tool. maturin can be installed from PyPI or packaged as well. This is the simplest and recommended way of installing from source, assuming rustup is available from a package manager:

rustup default nightly
pip wheel --no-binary=ormsgpack ormsgpack

This is an example of building a wheel using the repository as source, rustup installed from upstream, and a pinned version of Rust:

pip install maturin
curl https://sh.rustup.rs -sSf | sh -s -- --default-toolchain nightly-2021-05-25 --profile minimal -y
maturin build --no-sdist --release --strip --manylinux off
ls -1 target/wheels

Problems with the Rust nightly channel may require pinning a version. nightly-2021-05-25 is known to be ok.

ormsgpack is tested for amd64 and aarch64 on Linux, macOS, and Windows. It may not work on 32-bit targets. It has recommended RUSTFLAGS specified in .cargo/config so it is recommended to either not set RUSTFLAGS or include these options.

There are no runtime dependencies other than libc.

License

orjson was written by ijl <ijl@mailbox.org>, copyright 2018 - 2021, licensed under both the Apache 2 and MIT licenses.

ormsgpack was forked from orjson and is maintained by Aviram Hassan <aviramyhassan@gmail.com>, licensed same as orjson.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

ormsgpack-0.3.2.tar.gz (49.1 kB view details)

Uploaded Source

Built Distributions

ormsgpack-0.3.2-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (190.9 kB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ x86-64

ormsgpack-0.3.2-cp39-none-win_amd64.whl (140.8 kB view details)

Uploaded CPython 3.9 Windows x86-64

ormsgpack-0.3.2-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (190.9 kB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ x86-64

ormsgpack-0.3.2-cp39-cp39-macosx_10_7_x86_64.whl (188.7 kB view details)

Uploaded CPython 3.9 macOS 10.7+ x86-64

ormsgpack-0.3.2-cp38-none-win_amd64.whl (140.8 kB view details)

Uploaded CPython 3.8 Windows x86-64

ormsgpack-0.3.2-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (190.9 kB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ x86-64

ormsgpack-0.3.2-cp38-cp38-macosx_10_7_x86_64.whl (188.7 kB view details)

Uploaded CPython 3.8 macOS 10.7+ x86-64

ormsgpack-0.3.2-cp37-none-win_amd64.whl (140.8 kB view details)

Uploaded CPython 3.7 Windows x86-64

ormsgpack-0.3.2-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (190.9 kB view details)

Uploaded CPython 3.7m manylinux: glibc 2.17+ x86-64

ormsgpack-0.3.2-cp37-cp37m-macosx_10_7_x86_64.whl (188.8 kB view details)

Uploaded CPython 3.7m macOS 10.7+ x86-64

ormsgpack-0.3.2-cp36-none-win_amd64.whl (140.8 kB view details)

Uploaded CPython 3.6 Windows x86-64

ormsgpack-0.3.2-cp36-cp36m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (190.9 kB view details)

Uploaded CPython 3.6m manylinux: glibc 2.17+ x86-64

ormsgpack-0.3.2-cp36-cp36m-macosx_10_7_x86_64.whl (188.8 kB view details)

Uploaded CPython 3.6m macOS 10.7+ x86-64

File details

Details for the file ormsgpack-0.3.2.tar.gz.

File metadata

  • Download URL: ormsgpack-0.3.2.tar.gz
  • Upload date:
  • Size: 49.1 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.1 importlib_metadata/4.6.1 pkginfo/1.7.1 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.61.2 CPython/3.8.10

File hashes

Hashes for ormsgpack-0.3.2.tar.gz
Algorithm Hash digest
SHA256 818c23b721a26399fe1592b550ca68aae1f1d3ede79a6bd4876db1bec31a5621
MD5 ae52ce566a831623e16756a7840dd4c1
BLAKE2b-256 1c5141aee4617f391f2eb1e88ff954cd7792650832a4cbb5cf72d22a70767f99

See more details on using hashes here.

File details

Details for the file ormsgpack-0.3.2-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for ormsgpack-0.3.2-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 e37a29d82743a95af7896660a49afbd8d876d3a9a8d888f62d685b5573e1172a
MD5 a2109245ea5fedfba8351cbe4deac492
BLAKE2b-256 57ddaf9ae896bef75f5f4306aa95fdd785da6a49321c3d1e9c3cb89f7f193932

See more details on using hashes here.

File details

Details for the file ormsgpack-0.3.2-cp39-none-win_amd64.whl.

File metadata

  • Download URL: ormsgpack-0.3.2-cp39-none-win_amd64.whl
  • Upload date:
  • Size: 140.8 kB
  • Tags: CPython 3.9, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.1 importlib_metadata/4.6.1 pkginfo/1.7.1 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.61.2 CPython/3.9.5

File hashes

Hashes for ormsgpack-0.3.2-cp39-none-win_amd64.whl
Algorithm Hash digest
SHA256 8a5f3a92e061942c2aecc50d98e3a57d0b5339f194ee8b2f8819aa4f7ce4c333
MD5 fb2e48e7dda8c461ee843a4abd657223
BLAKE2b-256 f1ea7895d0c7225e2c046a14982ac01606be47944925181bfcb17d74f28bcbf4

See more details on using hashes here.

File details

Details for the file ormsgpack-0.3.2-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for ormsgpack-0.3.2-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 cdad0bc3d42056dea74962ffd0e320e0a7158b07aceeb40212158ba1a9299068
MD5 f82469ab4e499ed29c213b59963b3334
BLAKE2b-256 31ec0021cd582f6758d43df3911f8891a8408614f6d810f6a99eac3493bbcef3

See more details on using hashes here.

File details

Details for the file ormsgpack-0.3.2-cp39-cp39-macosx_10_7_x86_64.whl.

File metadata

  • Download URL: ormsgpack-0.3.2-cp39-cp39-macosx_10_7_x86_64.whl
  • Upload date:
  • Size: 188.7 kB
  • Tags: CPython 3.9, macOS 10.7+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.1 importlib_metadata/4.6.1 pkginfo/1.7.1 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.61.2 CPython/3.9.5

File hashes

Hashes for ormsgpack-0.3.2-cp39-cp39-macosx_10_7_x86_64.whl
Algorithm Hash digest
SHA256 a7325ace210cb45fb6af7a70110186153d237678acfd02e799f43d0b42ced66a
MD5 674dd2f4608638dbaff1b294fbd3f01e
BLAKE2b-256 b52bd6ba222580f541de69585815d8d883b76de22cad80369ab2cef9214f0916

See more details on using hashes here.

File details

Details for the file ormsgpack-0.3.2-cp38-none-win_amd64.whl.

File metadata

  • Download URL: ormsgpack-0.3.2-cp38-none-win_amd64.whl
  • Upload date:
  • Size: 140.8 kB
  • Tags: CPython 3.8, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.1 importlib_metadata/4.6.1 pkginfo/1.7.1 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.61.2 CPython/3.8.10

File hashes

Hashes for ormsgpack-0.3.2-cp38-none-win_amd64.whl
Algorithm Hash digest
SHA256 df3b35d72c4ec49ec24c0eec59ce54c62fadb235f35690d63adb8dd8ebe6b43c
MD5 609ec58ee9d2026642ce1e1e1be4fd34
BLAKE2b-256 22df71a7c1b2dba7748002b7c655351a9d57379aa030763e4443389e3bbb337a

See more details on using hashes here.

File details

Details for the file ormsgpack-0.3.2-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for ormsgpack-0.3.2-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 6ad37b2c77ef9b565fc16a491fd06c33990aedbe98ab36ec78690eb2c28eba0b
MD5 3c1538ac627784f09d2c1ddaf90f754c
BLAKE2b-256 ea6af0a88ab48b06130256365f2ce83af8f8bebd66d841f815c51636bc6761ab

See more details on using hashes here.

File details

Details for the file ormsgpack-0.3.2-cp38-cp38-macosx_10_7_x86_64.whl.

File metadata

  • Download URL: ormsgpack-0.3.2-cp38-cp38-macosx_10_7_x86_64.whl
  • Upload date:
  • Size: 188.7 kB
  • Tags: CPython 3.8, macOS 10.7+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.1 importlib_metadata/4.6.1 pkginfo/1.7.1 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.61.2 CPython/3.8.10

File hashes

Hashes for ormsgpack-0.3.2-cp38-cp38-macosx_10_7_x86_64.whl
Algorithm Hash digest
SHA256 e6259e64191d13a42428f45aee69f8fd10fb61961455cf2ea2fe1dc6f8596ff1
MD5 ae7f16b59c569d56bffcbd1c162d98c2
BLAKE2b-256 329e326fa4c62288617e64f7e1fc02e377f4bb337ca11a9cca439eb7e8b555f5

See more details on using hashes here.

File details

Details for the file ormsgpack-0.3.2-cp37-none-win_amd64.whl.

File metadata

  • Download URL: ormsgpack-0.3.2-cp37-none-win_amd64.whl
  • Upload date:
  • Size: 140.8 kB
  • Tags: CPython 3.7, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.1 importlib_metadata/4.6.0 pkginfo/1.7.1 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.61.2 CPython/3.7.9

File hashes

Hashes for ormsgpack-0.3.2-cp37-none-win_amd64.whl
Algorithm Hash digest
SHA256 58a95e5e693ab47a4036e3eacc9f7e1f94b5c18723f0e52e672d35f92c587c20
MD5 7ac0cd2b4fb930c6ef96e63eaafae557
BLAKE2b-256 e9cfbb34fc70d7cc52f439e5af31e3dbaffc033e47da94b2bca54adfe807c614

See more details on using hashes here.

File details

Details for the file ormsgpack-0.3.2-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for ormsgpack-0.3.2-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 8643b8db9f4c287c68b9ed4bfb85a93acf6a424f9744a15098a0d02492af5a77
MD5 dd584f7f9f3de918f15b05d57b2dcb94
BLAKE2b-256 43a9c412311dbcedcde3e9aef090ab72be3c90e92ca56ac85a80084feb8d6e19

See more details on using hashes here.

File details

Details for the file ormsgpack-0.3.2-cp37-cp37m-macosx_10_7_x86_64.whl.

File metadata

  • Download URL: ormsgpack-0.3.2-cp37-cp37m-macosx_10_7_x86_64.whl
  • Upload date:
  • Size: 188.8 kB
  • Tags: CPython 3.7m, macOS 10.7+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.1 importlib_metadata/4.6.1 pkginfo/1.7.1 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.61.2 CPython/3.7.10

File hashes

Hashes for ormsgpack-0.3.2-cp37-cp37m-macosx_10_7_x86_64.whl
Algorithm Hash digest
SHA256 78c3dc932f5c14e1816dc9085a35a4564de2d9a252d8e72f3a385d299db6b0bc
MD5 0089b1bcb6d12a47c38f2b0994f193f0
BLAKE2b-256 57df52c3bc57c310b4126054c7bc1bd0f630af16e066049746e35bc9e33b1885

See more details on using hashes here.

File details

Details for the file ormsgpack-0.3.2-cp36-none-win_amd64.whl.

File metadata

  • Download URL: ormsgpack-0.3.2-cp36-none-win_amd64.whl
  • Upload date:
  • Size: 140.8 kB
  • Tags: CPython 3.6, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.1 importlib_metadata/4.6.1 pkginfo/1.7.1 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.61.2 CPython/3.6.8

File hashes

Hashes for ormsgpack-0.3.2-cp36-none-win_amd64.whl
Algorithm Hash digest
SHA256 106e816523d6d2d4d81912d4ac23e08744d6b8de2c1853bb526e56fa94596790
MD5 1509fcc7cbff2e93a302450e511cd215
BLAKE2b-256 964d42fa34d5185c2367ec9d7dfa97741f6f12413edd6078bfbc5019b4b6a5dd

See more details on using hashes here.

File details

Details for the file ormsgpack-0.3.2-cp36-cp36m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for ormsgpack-0.3.2-cp36-cp36m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 8ce8f48eeb1290319cb08ab0234a9b33eecf65c194698f74ec2df628b2e2ccba
MD5 f8d94644b116638e7141c47b2ebaf9ce
BLAKE2b-256 5d0ee9e7d8556130ec748dfe7c894bf3f6dffe88c3334afa291dcb1ae20adac0

See more details on using hashes here.

File details

Details for the file ormsgpack-0.3.2-cp36-cp36m-macosx_10_7_x86_64.whl.

File metadata

  • Download URL: ormsgpack-0.3.2-cp36-cp36m-macosx_10_7_x86_64.whl
  • Upload date:
  • Size: 188.8 kB
  • Tags: CPython 3.6m, macOS 10.7+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.1 importlib_metadata/4.6.1 pkginfo/1.7.1 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.61.2 CPython/3.6.13

File hashes

Hashes for ormsgpack-0.3.2-cp36-cp36m-macosx_10_7_x86_64.whl
Algorithm Hash digest
SHA256 c218ac9c1d53a977959da75aca9832591b41787257a0c25af593445c756ebd7c
MD5 8311bbac0d8f72173b8bdb53c5c412c3
BLAKE2b-256 bd5145feba6edab8b4619367d53072b1b5c51fa56e25af0360f9d151b51b22af

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page