Skip to main content

Fast, correct Python msgpack library supporting dataclasses, datetimes, and numpy

Project description

ormsgpack

PyPI PyPI - Downloads

ormsgpack is a fast msgpack library for Python. It is a fork/reboot of orjson It serializes faster than msgpack-python and deserializes a bit slower (right now). It supports serialization of: dataclass, datetime, numpy, pydantic and UUID instances natively.

Its features and drawbacks compared to other Python msgpack libraries:

  • serializes dataclass instances natively.
  • serializes datetime, date, and time instances to RFC 3339 format, e.g., "1970-01-01T00:00:00+00:00"
  • serializes numpy.ndarray instances natively and faster.
  • serializes pydantic.BaseModel instances natively (disregards the configuration ATM).
  • serializes arbitrary types using a default hook

ormsgpack supports CPython 3.6, 3.7, 3.8, 3.9, and 3.10. ormsgpack does not support PyPy. Releases follow semantic versioning and serializing a new object type without an opt-in flag is considered a breaking change.

ormsgpack is licensed under both the Apache 2.0 and MIT licenses. The repository and issue tracker is github.com/aviramha/ormsgpack, and patches may be submitted there. There is a CHANGELOG available in the repository.

  1. Usage
    1. Install
    2. Quickstart
    3. Serialize
      1. default
      2. option
    4. Deserialize
  2. Types
    1. dataclass
    2. datetime
    3. enum
    4. float
    5. int
    6. numpy
    7. uuid
    8. pydantic
  3. Latency
  4. Questions
  5. Packaging
  6. License

Usage

Install

To install a wheel from PyPI:

pip install --upgrade "pip>=19.3" # manylinux2014 support
pip install --upgrade ormsgpack

Notice that Linux environments with a pip version shipped in 2018 or earlier must first upgrade pip to support manylinux2014 wheels.

To build a wheel, see packaging.

Quickstart

This is an example of serializing, with options specified, and deserializing:

>>> import ormsgpack, datetime, numpy
>>> data = {
    "type": "job",
    "created_at": datetime.datetime(1970, 1, 1),
    "status": "🆗",
    "payload": numpy.array([[1, 2], [3, 4]]),
}
>>> ormsgpack.packb(data, option=ormsgpack.OPT_NAIVE_UTC | ormsgpack.OPT_SERIALIZE_NUMPY)
b'\x84\xa4type\xa3job\xaacreated_at\xb91970-01-01T00:00:00+00:00\xa6status\xa4\xf0\x9f\x86\x97\xa7payload\x92\x92\x01\x02\x92\x03\x04'
>>> ormsgpack.unpackb(_)
{'type': 'job', 'created_at': '1970-01-01T00:00:00+00:00', 'status': '🆗', 'payload': [[1, 2], [3, 4]]}

Serialize

def packb(
    __obj: Any,
    default: Optional[Callable[[Any], Any]] = ...,
    option: Optional[int] = ...,
) -> bytes: ...

packb() serializes Python objects to msgpack.

It natively serializes bytes, str, dict, list, tuple, int, float, bool, dataclasses.dataclass, typing.TypedDict, datetime.datetime, datetime.date, datetime.time, uuid.UUID, numpy.ndarray, and None instances. It supports arbitrary types through default. It serializes subclasses of str, int, dict, list, dataclasses.dataclass, and enum.Enum. It does not serialize subclasses of tuple to avoid serializing namedtuple objects as arrays. To avoid serializing subclasses, specify the option ormsgpack.OPT_PASSTHROUGH_SUBCLASS.

The output is a bytes object containing UTF-8.

The global interpreter lock (GIL) is held for the duration of the call.

It raises MsgpackEncodeError on an unsupported type. This exception message describes the invalid object with the error message Type is not JSON serializable: .... To fix this, specify default.

It raises MsgpackEncodeError on a str that contains invalid UTF-8.

It raises MsgpackEncodeError if a dict has a key of a type other than str or bytes, unless OPT_NON_STR_KEYS is specified.

It raises MsgpackEncodeError if the output of default recurses to handling by default more than 254 levels deep.

It raises MsgpackEncodeError on circular references.

It raises MsgpackEncodeError if a tzinfo on a datetime object is unsupported.

MsgpackEncodeError is a subclass of TypeError. This is for compatibility with the standard library.

default

To serialize a subclass or arbitrary types, specify default as a callable that returns a supported type. default may be a function, lambda, or callable class instance. To specify that a type was not handled by default, raise an exception such as TypeError.

>>> import ormsgpack, decimal
>>>
def default(obj):
    if isinstance(obj, decimal.Decimal):
        return str(obj)
    raise TypeError

>>> ormsgpack.packb(decimal.Decimal("0.0842389659712649442845"))
MsgpackEncodeError: Type is not JSON serializable: decimal.Decimal
>>> ormsgpack.packb(decimal.Decimal("0.0842389659712649442845"), default=default)
b'\xb80.0842389659712649442845'
>>> ormsgpack.packb({1, 2}, default=default)
ormsgpack.MsgpackEncodeError: Type is not msgpack serializable: set

The default callable may return an object that itself must be handled by default up to 254 times before an exception is raised.

It is important that default raise an exception if a type cannot be handled. Python otherwise implicitly returns None, which appears to the caller like a legitimate value and is serialized:

>>> import ormsgpack, json, rapidjson
>>>
def default(obj):
    if isinstance(obj, decimal.Decimal):
        return str(obj)

>>> ormsgpack.unpackb(ormsgpack.packb({"set":{1, 2}}, default=default))
{'set': None}

option

To modify how data is serialized, specify option. Each option is an integer constant in ormspgack. To specify multiple options, mask them together, e.g., option=ormspgack.OPT_NON_STR_KEYS | ormspgack.OPT_NAIVE_UTC.

OPT_NAIVE_UTC

Serialize datetime.datetime objects without a tzinfo as UTC. This has no effect on datetime.datetime objects that have tzinfo set.

>>> import ormsgpack, datetime
>>> ormsgpack.unpackb(ormsgpack.packb(
        datetime.datetime(1970, 1, 1, 0, 0, 0),
    ))
"1970-01-01T00:00:00"
>>> ormsgpack.unpackb(ormsgpack.packb(
        datetime.datetime(1970, 1, 1, 0, 0, 0),
        option=ormsgpack.OPT_NAIVE_UTC,
    ))
"1970-01-01T00:00:00+00:00"
OPT_NON_STR_KEYS

Serialize dict keys of type other than str. This allows dict keys to be one of str, int, float, bool, None, datetime.datetime, datetime.date, datetime.time, enum.Enum, and uuid.UUID. For comparison, the standard library serializes str, int, float, bool or None by default.

>>> import ormsgpack, datetime, uuid
>>> ormsgpack.packb(
        {uuid.UUID("7202d115-7ff3-4c81-a7c1-2a1f067b1ece"): [1, 2, 3]},
        option=ormsgpack.OPT_NON_STR_KEYS,
    )
>>> ormsgpack.packb(
        {datetime.datetime(1970, 1, 1, 0, 0, 0): [1, 2, 3]},
        option=ormsgpack.OPT_NON_STR_KEYS | ormsgpack.OPT_NAIVE_UTC,
    )

These types are generally serialized how they would be as values, e.g., datetime.datetime is still an RFC 3339 string and respects options affecting it.

This option has the risk of creating duplicate keys. This is because non-str objects may serialize to the same str as an existing key, e.g., {"1970-01-01T00:00:00+00:00": true, datetime.datetime(1970, 1, 1, 0, 0, 0): false}. The last key to be inserted to the dict will be serialized last and a msgpack deserializer will presumably take the last occurrence of a key (in the above, false). The first value will be lost.

OPT_OMIT_MICROSECONDS

Do not serialize the microsecond field on datetime.datetime and datetime.time instances.

>>> import ormsgpack, datetime
>>> ormsgpack.packb(
        datetime.datetime(1970, 1, 1, 0, 0, 0, 1),
    )
>>> ormsgpack.packb(
        datetime.datetime(1970, 1, 1, 0, 0, 0, 1),
        option=ormsgpack.OPT_OMIT_MICROSECONDS,
    )
OPT_PASSTHROUGH_BIG_INT

Enables passthrough of big (Python) ints. By setting this option, one can set a default function for ints larger than 63 bits, smaller ints are still serialized efficiently.

>>> import ormsgpack
>>> ormsgpack.packb(
        2**65,
    )
TypeError: Integer exceeds 64-bit range
>>> ormsgpack.unpackb(
        ormsgpack.packb(
            2**65,
            option=ormsgpack.OPT_PASSTHROUGH_BIG_INT,
            default=lambda _: {"type": "bigint", "value": str(_) }
        )
    )
{'type': 'bigint', 'value': '36893488147419103232'}
OPT_PASSTHROUGH_DATACLASS

Passthrough dataclasses.dataclass instances to default. This allows customizing their output but is much slower.

>>> import ormsgpack, dataclasses
>>>
@dataclasses.dataclass
class User:
    id: str
    name: str
    password: str

def default(obj):
    if isinstance(obj, User):
        return {"id": obj.id, "name": obj.name}
    raise TypeError

>>> ormsgpack.packb(User("3b1", "asd", "zxc"))
b'\x83\xa2id\xa33b1\xa4name\xa3asd\xa8password\xa3zxc'
>>> ormsgpack.packb(User("3b1", "asd", "zxc"), option=ormsgpack.OPT_PASSTHROUGH_DATACLASS)
TypeError: Type is not msgpack serializable: User
>>> ormsgpack.packb(
        User("3b1", "asd", "zxc"),
        option=ormsgpack.OPT_PASSTHROUGH_DATACLASS,
        default=default,
    )
b'\x82\xa2id\xa33b1\xa4name\xa3asd'
OPT_PASSTHROUGH_DATETIME

Passthrough datetime.datetime, datetime.date, and datetime.time instances to default. This allows serializing datetimes to a custom format, e.g., HTTP dates:

>>> import ormsgpack, datetime
>>>
def default(obj):
    if isinstance(obj, datetime.datetime):
        return obj.strftime("%a, %d %b %Y %H:%M:%S GMT")
    raise TypeError

>>> ormsgpack.packb({"created_at": datetime.datetime(1970, 1, 1)})
b'\x81\xaacreated_at\xb31970-01-01T00:00:00'
>>> ormsgpack.packb({"created_at": datetime.datetime(1970, 1, 1)}, option=ormsgpack.OPT_PASSTHROUGH_DATETIME)
TypeError: Type is not msgpack serializable: datetime.datetime
>>> ormsgpack.packb(
        {"created_at": datetime.datetime(1970, 1, 1)},
        option=ormsgpack.OPT_PASSTHROUGH_DATETIME,
        default=default,
    )
b'\x81\xaacreated_at\xbdThu, 01 Jan 1970 00:00:00 GMT'

This does not affect datetimes in dict keys if using OPT_NON_STR_KEYS.

OPT_PASSTHROUGH_SUBCLASS

Passthrough subclasses of builtin types to default.

>>> import ormsgpack
>>>
class Secret(str):
    pass

def default(obj):
    if isinstance(obj, Secret):
        return "******"
    raise TypeError

>>> ormsgpack.packb(Secret("zxc"))
b'\xa3zxc'
>>> ormsgpack.packb(Secret("zxc"), option=ormsgpack.OPT_PASSTHROUGH_SUBCLASS)
TypeError: Type is not msgpack serializable: Secret
>>> ormsgpack.packb(Secret("zxc"), option=ormsgpack.OPT_PASSTHROUGH_SUBCLASS, default=default)
b'\xa6******'

This does not affect serializing subclasses as dict keys if using OPT_NON_STR_KEYS.

OPT_PASSTHROUGH_TUPLE

Passthrough tuples to default.

>>> import ormsgpack
>>> ormsgpack.unpackb(
        ormsgpack.packb(
            (9193, "test", 42),
        )
    )
[9193, 'test', 42]
>>> ormsgpack.unpackb(
        ormsgpack.packb(
            (9193, "test", 42),
            option=ormsgpack.OPT_PASSTHROUGH_TUPLE,
            default=lambda _: {"type": "tuple", "value": list(_)}
        )
    )
{'type': 'tuple', 'value': [9193, 'test', 42]}
OPT_SERIALIZE_NUMPY

Serialize numpy.ndarray instances. For more, see numpy.

OPT_SERIALIZE_PYDANTIC

Serialize pydantic.BaseModel instances. Right now it ignores the config (str transformations), support might be added later.

OPT_UTC_Z

Serialize a UTC timezone on datetime.datetime instances as Z instead of +00:00.

>>> import ormsgpack, datetime
>>> ormsgpack.packb(
        datetime.datetime(1970, 1, 1, 0, 0, 0, tzinfo=datetime.timezone.utc),
    )
b'"1970-01-01T00:00:00+00:00"'
>>> ormsgpack.packb(
        datetime.datetime(1970, 1, 1, 0, 0, 0, tzinfo=datetime.timezone.utc),
        option=ormsgpack.OPT_UTC_Z
    )
b'"1970-01-01T00:00:00Z"'

Deserialize

def unpackb(__obj: Union[bytes, bytearray, memoryview], / , option=None) -> Any: ...

unpackb() deserializes msgpack to Python objects. It deserializes to dict, list, int, float, str, bool, bytes and None objects.

bytes, bytearray, memoryview input are accepted.

ormsgpack maintains a cache of map keys for the duration of the process. This causes a net reduction in memory usage by avoiding duplicate strings. The keys must be at most 64 bytes to be cached and 512 entries are stored.

The global interpreter lock (GIL) is held for the duration of the call.

It raises MsgpackDecodeError if given an invalid type or invalid msgpack.

MsgpackDecodeError is a subclass of ValueError.

option

unpackb() supports the OPT_NON_STR_KEYS option, that is similar to original msgpack's strict_map_keys=False. Be aware that this option is considered unsafe and disabled by default in msgpack due to possibility of HashDoS.

Types

dataclass

ormsgpack serializes instances of dataclasses.dataclass natively. It serializes instances 40-50x as fast as other libraries and avoids a severe slowdown seen in other libraries compared to serializing dict.

It is supported to pass all variants of dataclasses, including dataclasses using __slots__, frozen dataclasses, those with optional or default attributes, and subclasses. There is a performance benefit to not using __slots__.

Dataclasses are serialized as maps, with every attribute serialized and in the order given on class definition:

>>> import dataclasses, ormsgpack, typing

@dataclasses.dataclass
class Member:
    id: int
    active: bool = dataclasses.field(default=False)

@dataclasses.dataclass
class Object:
    id: int
    name: str
    members: typing.List[Member]

>>> ormsgpack.packb(Object(1, "a", [Member(1, True), Member(2)]))
b'\x83\xa2id\x01\xa4name\xa1a\xa7members\x92\x82\xa2id\x01\xa6active\xc3\x82\xa2id\x02\xa6active\xc2'

Users may wish to control how dataclass instances are serialized, e.g., to not serialize an attribute or to change the name of an attribute when serialized. ormsgpack may implement support using the metadata mapping on field attributes, e.g., field(metadata={"json_serialize": False}), if use cases are clear.

Performance

alt text

--------------------------------------------------------------------------------- benchmark 'dataclass': 2 tests --------------------------------------------------------------------------------
Name (time in ms)                 Min                 Max                Mean            StdDev              Median               IQR            Outliers       OPS            Rounds  Iterations
-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------
test_dataclass_ormsgpack       3.4248 (1.0)        7.7949 (1.0)        3.6266 (1.0)      0.3293 (1.0)        3.5815 (1.0)      0.0310 (1.0)          4;34  275.7434 (1.0)         240           1
test_dataclass_msgpack       140.2774 (40.96)    143.6087 (18.42)    141.3847 (38.99)    1.0038 (3.05)     141.1823 (39.42)    0.7304 (23.60)         2;1    7.0729 (0.03)          8           1
-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------

datetime

ormsgpack serializes datetime.datetime objects to RFC 3339 format, e.g., "1970-01-01T00:00:00+00:00". This is a subset of ISO 8601 and compatible with isoformat() in the standard library.

>>> import ormsgpack, datetime, zoneinfo
>>> ormsgpack.packb(
    datetime.datetime(2018, 12, 1, 2, 3, 4, 9, tzinfo=zoneinfo.ZoneInfo('Australia/Adelaide'))
)
>>> ormsgpack.unpackb(_)
"2018-12-01T02:03:04.000009+10:30"
>>> ormsgpack.packb(
    datetime.datetime.fromtimestamp(4123518902).replace(tzinfo=datetime.timezone.utc)
)
>>> ormsgpack.unpackb(_)
"2100-09-01T21:55:02+00:00"
>>> ormsgpack.packb(
    datetime.datetime.fromtimestamp(4123518902)
)
>>> ormsgpack.unpackb(_)
"2100-09-01T21:55:02"

datetime.datetime supports instances with a tzinfo that is None, datetime.timezone.utc, a timezone instance from the python3.9+ zoneinfo module, or a timezone instance from the third-party pendulum, pytz, or dateutil/arrow libraries.

datetime.time objects must not have a tzinfo.

>>> import ormsgpack, datetime
>>> ormsgpack.packb(datetime.time(12, 0, 15, 290))
>>> ormsgpack.unpackb(_)
"12:00:15.000290"

datetime.date objects will always serialize.

>>> import ormsgpack, datetime
>>> ormsgpack.packb(datetime.date(1900, 1, 2))
>>> ormsgpack.unpackb(_)
"1900-01-02"

Errors with tzinfo result in MsgpackEncodeError being raised.

It is faster to have ormsgpack serialize datetime objects than to do so before calling packb(). If using an unsupported type such as pendulum.datetime, use default.

To disable serialization of datetime objects specify the option ormsgpack.OPT_PASSTHROUGH_DATETIME.

To use "Z" suffix instead of "+00:00" to indicate UTC ("Zulu") time, use the option ormsgpack.OPT_UTC_Z.

To assume datetimes without timezone are UTC, se the option ormsgpack.OPT_NAIVE_UTC.

enum

ormsgpack serializes enums natively. Options apply to their values.

>>> import enum, datetime, ormsgpack
>>>
class DatetimeEnum(enum.Enum):
    EPOCH = datetime.datetime(1970, 1, 1, 0, 0, 0)
>>> ormsgpack.packb(DatetimeEnum.EPOCH)
>>> ormsgpack.unpackb(_)
"1970-01-01T00:00:00"
>>> ormsgpack.packb(DatetimeEnum.EPOCH, option=ormsgpack.OPT_NAIVE_UTC)
>>> ormsgpack.unpackb(_)
"1970-01-01T00:00:00+00:00"

Enums with members that are not supported types can be serialized using default:

>>> import enum, ormsgpack
>>>
class Custom:
    def __init__(self, val):
        self.val = val

def default(obj):
    if isinstance(obj, Custom):
        return obj.val
    raise TypeError

class CustomEnum(enum.Enum):
    ONE = Custom(1)

>>> ormsgpack.packb(CustomEnum.ONE, default=default)
>>> ormsgpack.unpackb(_)
1

float

ormsgpack serializes and deserializes double precision floats with no loss of precision and consistent rounding.

int

ormsgpack serializes and deserializes 64-bit integers by default. The range supported is a signed 64-bit integer's minimum (-9223372036854775807) to an unsigned 64-bit integer's maximum (18446744073709551615).

numpy

ormsgpack natively serializes numpy.ndarray and individual numpy.float64, numpy.float32, numpy.int64, numpy.int32, numpy.int8, numpy.uint64, numpy.uint32, and numpy.uint8 instances. Arrays may have a dtype of numpy.bool, numpy.float32, numpy.float64, numpy.int32, numpy.int64, numpy.uint32, numpy.uint64, numpy.uintp, or numpy.intp. ormsgpack is faster than all compared libraries at serializing numpy instances. Serializing numpy data requires specifying option=ormsgpack.OPT_SERIALIZE_NUMPY.

>>> import ormsgpack, numpy
>>> ormsgpack.packb(
        numpy.array([[1, 2, 3], [4, 5, 6]]),
        option=ormsgpack.OPT_SERIALIZE_NUMPY,
)
>>> ormsgpack.unpackb(_)
[[1,2,3],[4,5,6]]

The array must be a contiguous C array (C_CONTIGUOUS) and one of the supported datatypes.

If an array is not a contiguous C array or contains an supported datatype, ormsgpack falls through to default. In default, obj.tolist() can be specified. If an array is malformed, which is not expected, ormsgpack.MsgpackEncodeError is raised.

Performance

alt text alt text alt text alt text alt text

---------------------------------------------------------------------------------- benchmark 'numpy float64': 2 tests ---------------------------------------------------------------------------------
Name (time in ms)                      Min                 Max                Mean             StdDev              Median                IQR            Outliers      OPS            Rounds  Iterations
-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------
test_numpy_ormsgpack[float64]      77.9625 (1.0)       85.2507 (1.0)       79.0326 (1.0)       1.9043 (1.0)       78.5505 (1.0)       0.7408 (1.0)           1;1  12.6530 (1.0)          13           1
test_numpy_msgpack[float64]       511.5176 (6.56)     606.9395 (7.12)     559.0017 (7.07)     44.0661 (23.14)    572.5499 (7.29)     81.2972 (109.75)        3;0   1.7889 (0.14)          5           1
-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------


------------------------------------------------------------------------------------- benchmark 'numpy int32': 2 tests -------------------------------------------------------------------------------------
Name (time in ms)                      Min                   Max                  Mean             StdDev                Median                IQR            Outliers     OPS            Rounds  Iterations
------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------
test_numpy_ormsgpack[int32]       197.8751 (1.0)        210.3111 (1.0)        201.1033 (1.0)       5.1886 (1.0)        198.8518 (1.0)       3.8297 (1.0)           1;1  4.9726 (1.0)           5           1
test_numpy_msgpack[int32]       1,363.8515 (6.89)     1,505.4747 (7.16)     1,428.2127 (7.10)     53.4176 (10.30)    1,425.3516 (7.17)     72.8064 (19.01)         2;0  0.7002 (0.14)          5           1
------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------


-------------------------------------------------------------------------------- benchmark 'numpy int8': 2 tests ---------------------------------------------------------------------------------
Name (time in ms)                   Min                 Max                Mean            StdDev              Median                IQR            Outliers     OPS            Rounds  Iterations
--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------
test_numpy_ormsgpack[int8]     107.8013 (1.0)      113.7336 (1.0)      109.0364 (1.0)      1.7805 (1.0)      108.3574 (1.0)       0.4066 (1.0)           1;2  9.1712 (1.0)          10           1
test_numpy_msgpack[int8]       685.4149 (6.36)     703.2958 (6.18)     693.2396 (6.36)     7.9572 (4.47)     691.5435 (6.38)     14.4142 (35.45)         1;0  1.4425 (0.16)          5           1
--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------


------------------------------------------------------------------------------------- benchmark 'numpy npbool': 2 tests --------------------------------------------------------------------------------------
Name (time in ms)                       Min                   Max                  Mean             StdDev                Median                IQR            Outliers      OPS            Rounds  Iterations
--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------
test_numpy_ormsgpack[npbool]        87.9005 (1.0)         89.5460 (1.0)         88.7928 (1.0)       0.5098 (1.0)         88.8508 (1.0)       0.6609 (1.0)           4;0  11.2622 (1.0)          12           1
test_numpy_msgpack[npbool]       1,095.0599 (12.46)    1,176.3442 (13.14)    1,120.5916 (12.62)    32.9993 (64.73)    1,110.4216 (12.50)    38.4189 (58.13)         1;0   0.8924 (0.08)          5           1
--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------


--------------------------------------------------------------------------------- benchmark 'numpy uint8': 2 tests ---------------------------------------------------------------------------------
Name (time in ms)                    Min                 Max                Mean             StdDev              Median                IQR            Outliers     OPS            Rounds  Iterations
----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------
test_numpy_ormsgpack[uint8]     133.1743 (1.0)      134.7246 (1.0)      134.2793 (1.0)       0.4946 (1.0)      134.3120 (1.0)       0.4492 (1.0)           1;1  7.4472 (1.0)           8           1
test_numpy_msgpack[uint8]       727.1393 (5.46)     824.8247 (6.12)     775.7032 (5.78)     34.9887 (70.73)    775.9595 (5.78)     36.2824 (80.78)         2;0  1.2892 (0.17)          5           1
----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------

uuid

ormsgpack serializes uuid.UUID instances to RFC 4122 format, e.g., "f81d4fae-7dec-11d0-a765-00a0c91e6bf6".

>>> import ormsgpack, uuid
>>> ormsgpack.packb(uuid.UUID('f81d4fae-7dec-11d0-a765-00a0c91e6bf6'))
>>> ormsgpack.unpackb(_)
"f81d4fae-7dec-11d0-a765-00a0c91e6bf6"
>>> ormsgpack.packb(uuid.uuid5(uuid.NAMESPACE_DNS, "python.org"))
>>> ormsgpack.unpackb(_)
"886313e1-3b8a-5372-9b90-0c9aee199e5d"

Pydantic

alt text ormsgpack serializes pydantic.BaseModel instances natively. Currently it ignores pydantic.BaseModel.Config.

Performance

-------------------------------------------------------------------------------- benchmark 'pydantic': 2 tests ---------------------------------------------------------------------------------
Name (time in ms)                Min                 Max                Mean            StdDev              Median               IQR            Outliers       OPS            Rounds  Iterations
------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------
test_pydantic_ormsgpack       4.3918 (1.0)       12.6521 (1.0)        4.8550 (1.0)      1.1455 (3.98)       4.6101 (1.0)      0.0662 (1.0)         11;24  205.9727 (1.0)         204           1
test_pydantic_msgpack       124.5500 (28.36)    125.5427 (9.92)     125.0582 (25.76)    0.2877 (1.0)      125.0855 (27.13)    0.2543 (3.84)          2;0    7.9963 (0.04)          8           1
------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------

Latency

Graphs

alt text alt text alt text alt text alt text alt text alt text alt text

Data

----------------------------------------------------------------------------- benchmark 'canada packb': 2 tests ------------------------------------------------------------------------------
Name (time in ms)                   Min                Max              Mean            StdDev            Median               IQR            Outliers       OPS            Rounds  Iterations
----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------
test_ormsgpack_packb[canada]     3.5302 (1.0)       3.8939 (1.0)      3.7319 (1.0)      0.0563 (1.0)      3.7395 (1.0)      0.0484 (1.0)         56;22  267.9571 (1.0)         241           1
test_msgpack_packb[canada]       8.8642 (2.51)     14.0432 (3.61)     9.3660 (2.51)     0.5649 (10.03)    9.2983 (2.49)     0.0982 (2.03)         3;11  106.7691 (0.40)        106           1
----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------


------------------------------------------------------------------------------- benchmark 'canada unpackb': 2 tests --------------------------------------------------------------------------------
Name (time in ms)                      Min                Max               Mean             StdDev             Median                IQR            Outliers      OPS            Rounds  Iterations
----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------
test_msgpack_unpackb[canada]       10.1176 (1.0)      62.0466 (1.18)     33.4806 (1.0)      18.8279 (1.0)      46.6582 (1.0)      38.5921 (1.02)         30;0  29.8680 (1.0)          67           1
test_ormsgpack_unpackb[canada]     11.3992 (1.13)     52.6587 (1.0)      34.1842 (1.02)     18.9461 (1.01)     47.6456 (1.02)     37.8024 (1.0)           8;0  29.2533 (0.98)         20           1
----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------


----------------------------------------------------------------------------- benchmark 'citm_catalog packb': 2 tests -----------------------------------------------------------------------------
Name (time in ms)                         Min               Max              Mean            StdDev            Median               IQR            Outliers       OPS            Rounds  Iterations
---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------
test_ormsgpack_packb[citm_catalog]     1.8024 (1.0)      2.1259 (1.0)      1.9487 (1.0)      0.0346 (1.0)      1.9525 (1.0)      0.0219 (1.0)         79;60  513.1650 (1.0)         454           1
test_msgpack_packb[citm_catalog]       3.4195 (1.90)     3.8128 (1.79)     3.6928 (1.90)     0.0535 (1.55)     3.7009 (1.90)     0.0250 (1.14)        47;49  270.7958 (0.53)        257           1
---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------


------------------------------------------------------------------------------ benchmark 'citm_catalog unpackb': 2 tests ------------------------------------------------------------------------------
Name (time in ms)                           Min                Max               Mean             StdDev            Median               IQR            Outliers      OPS            Rounds  Iterations
-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------
test_ormsgpack_unpackb[citm_catalog]     5.6986 (1.0)      46.1843 (1.0)      14.2491 (1.0)      15.9791 (1.0)      6.1051 (1.0)      0.3074 (1.0)           5;5  70.1798 (1.0)          23           1
test_msgpack_unpackb[citm_catalog]       7.2600 (1.27)     56.6642 (1.23)     16.4095 (1.15)     16.3257 (1.02)     7.7364 (1.27)     0.4944 (1.61)        28;29  60.9404 (0.87)        125           1
-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------


----------------------------------------------------------------------------------- benchmark 'github packb': 2 tests -----------------------------------------------------------------------------------
Name (time in us)                     Min                 Max                Mean            StdDev              Median               IQR            Outliers  OPS (Kops/s)            Rounds  Iterations
---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------
test_ormsgpack_packb[github]      73.0000 (1.0)      215.9000 (1.0)       80.4826 (1.0)      4.8889 (1.0)       80.3000 (1.0)      1.1000 (1.83)     866;1118       12.4250 (1.0)        6196           1
test_msgpack_packb[github]       103.8000 (1.42)     220.8000 (1.02)     112.8049 (1.40)     4.9686 (1.02)     113.0000 (1.41)     0.6000 (1.0)     1306;1560        8.8649 (0.71)       7028           1
---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------


----------------------------------------------------------------------------------- benchmark 'github unpackb': 2 tests -----------------------------------------------------------------------------------
Name (time in us)                       Min                 Max                Mean            StdDev              Median               IQR            Outliers  OPS (Kops/s)            Rounds  Iterations
-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------
test_ormsgpack_unpackb[github]     201.3000 (1.0)      318.5000 (1.0)      219.0861 (1.0)      6.7340 (1.0)      219.1000 (1.0)      1.2000 (1.0)       483;721        4.5644 (1.0)        3488           1
test_msgpack_unpackb[github]       289.8000 (1.44)     436.0000 (1.37)     314.9631 (1.44)     9.4130 (1.40)     315.1000 (1.44)     2.3000 (1.92)      341;557        3.1750 (0.70)       2477           1
-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------

--------------------------------------------------------------------------------------- benchmark 'twitter packb': 2 tests ---------------------------------------------------------------------------------------
Name (time in us)                        Min                   Max                  Mean             StdDev                Median                IQR            Outliers         OPS            Rounds  Iterations
------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------
test_ormsgpack_packb[twitter]       820.7000 (1.0)      2,945.2000 (2.03)       889.3791 (1.0)      78.4139 (2.43)       884.2000 (1.0)      12.5250 (1.0)          4;76  1,124.3799 (1.0)         809           1
test_msgpack_packb[twitter]       1,209.3000 (1.47)     1,451.2000 (1.0)      1,301.3615 (1.46)     32.2147 (1.0)      1,306.7000 (1.48)     14.1000 (1.13)      118;138    768.4260 (0.68)        592           1
------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------


------------------------------------------------------------------------------ benchmark 'twitter unpackb': 2 tests -----------------------------------------------------------------------------
Name (time in ms)                      Min                Max              Mean            StdDev            Median               IQR            Outliers       OPS            Rounds  Iterations
-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------
test_ormsgpack_unpackb[twitter]     2.7097 (1.0)      41.1530 (1.0)      3.2721 (1.0)      3.5860 (1.03)     2.8868 (1.0)      0.0614 (1.32)         4;38  305.6098 (1.0)         314           1
test_msgpack_unpackb[twitter]       3.8079 (1.41)     42.0617 (1.02)     4.4459 (1.36)     3.4893 (1.0)      4.1097 (1.42)     0.0465 (1.0)          2;54  224.9267 (0.74)        228           1
-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------

Reproducing

The above was measured using Python 3.7.9 on Azure Linux VM (x86_64) with ormsgpack 0.2.1 and msgpack 1.0.2.

The latency results can be reproduced using ./scripts/benchmark.sh and graphs using pytest --benchmark-histogram benchmarks/bench_*.

Questions

Why can't I install it from PyPI?

Probably pip needs to be upgraded to version 20.3 or later to support the latest manylinux_x_y or universal2 wheel formats.

Will it deserialize to dataclasses, UUIDs, decimals, etc or support object_hook?

No. This requires a schema specifying what types are expected and how to handle errors etc. This is addressed by data validation libraries a level above this.

Will it support PyPy?

If someone implements it well.

Packaging

To package ormsgpack requires Rust on the nightly channel and the maturin build tool. maturin can be installed from PyPI or packaged as well. This is the simplest and recommended way of installing from source, assuming rustup is available from a package manager:

rustup default nightly
pip wheel --no-binary=ormsgpack ormsgpack

This is an example of building a wheel using the repository as source, rustup installed from upstream, and a pinned version of Rust:

pip install maturin
curl https://sh.rustup.rs -sSf | sh -s -- --default-toolchain nightly-2021-05-25 --profile minimal -y
export RUSTFLAGS="-C target-cpu=k8"
maturin build --release --strip --manylinux off
ls -1 target/wheels

Problems with the Rust nightly channel may require pinning a version. nightly-2021-05-25 is known to be ok.

ormsgpack is tested for amd64 and aarch64 on Linux, macOS, and Windows. It may not work on 32-bit targets. It has recommended RUSTFLAGS specified in .cargo/config so it is recommended to either not set RUSTFLAGS or include these options.

There are no runtime dependencies other than libc.

License

orjson was written by ijl <ijl@mailbox.org>, copyright 2018 - 2021, licensed under both the Apache 2 and MIT licenses.

ormsgpack was forked from orjson and is maintained by Aviram Hassan <aviramyhassan@gmail.com>, licensed same as orjson.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

ormsgpack-1.2.5.tar.gz (51.8 kB view details)

Uploaded Source

Built Distributions

ormsgpack-1.2.5-cp311-none-win_amd64.whl (151.0 kB view details)

Uploaded CPython 3.11 Windows x86-64

ormsgpack-1.2.5-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (219.0 kB view details)

Uploaded CPython 3.11 manylinux: glibc 2.17+ x86-64

ormsgpack-1.2.5-cp311-cp311-macosx_10_9_x86_64.macosx_11_0_arm64.macosx_10_9_universal2.whl (392.9 kB view details)

Uploaded CPython 3.11 macOS 10.9+ universal2 (ARM64, x86-64) macOS 10.9+ x86-64 macOS 11.0+ ARM64

ormsgpack-1.2.5-cp311-cp311-macosx_10_7_x86_64.whl (89.2 kB view details)

Uploaded CPython 3.11 macOS 10.7+ x86-64

ormsgpack-1.2.5-cp310-none-win_amd64.whl (151.0 kB view details)

Uploaded CPython 3.10 Windows x86-64

ormsgpack-1.2.5-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (219.0 kB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ x86-64

ormsgpack-1.2.5-cp310-cp310-macosx_10_9_x86_64.macosx_11_0_arm64.macosx_10_9_universal2.whl (392.9 kB view details)

Uploaded CPython 3.10 macOS 10.9+ universal2 (ARM64, x86-64) macOS 10.9+ x86-64 macOS 11.0+ ARM64

ormsgpack-1.2.5-cp310-cp310-macosx_10_7_x86_64.whl (89.2 kB view details)

Uploaded CPython 3.10 macOS 10.7+ x86-64

ormsgpack-1.2.5-cp39-none-win_amd64.whl (151.0 kB view details)

Uploaded CPython 3.9 Windows x86-64

ormsgpack-1.2.5-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (219.0 kB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ x86-64

ormsgpack-1.2.5-cp39-cp39-macosx_10_9_x86_64.macosx_11_0_arm64.macosx_10_9_universal2.whl (392.9 kB view details)

Uploaded CPython 3.9 macOS 10.9+ universal2 (ARM64, x86-64) macOS 10.9+ x86-64 macOS 11.0+ ARM64

ormsgpack-1.2.5-cp39-cp39-macosx_10_7_x86_64.whl (89.2 kB view details)

Uploaded CPython 3.9 macOS 10.7+ x86-64

ormsgpack-1.2.5-cp38-none-win_amd64.whl (151.0 kB view details)

Uploaded CPython 3.8 Windows x86-64

ormsgpack-1.2.5-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (219.0 kB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ x86-64

ormsgpack-1.2.5-cp38-cp38-macosx_10_9_x86_64.macosx_11_0_arm64.macosx_10_9_universal2.whl (392.9 kB view details)

Uploaded CPython 3.8 macOS 10.9+ universal2 (ARM64, x86-64) macOS 10.9+ x86-64 macOS 11.0+ ARM64

ormsgpack-1.2.5-cp38-cp38-macosx_10_7_x86_64.whl (89.2 kB view details)

Uploaded CPython 3.8 macOS 10.7+ x86-64

ormsgpack-1.2.5-cp37-none-win_amd64.whl (150.9 kB view details)

Uploaded CPython 3.7 Windows x86-64

ormsgpack-1.2.5-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (219.0 kB view details)

Uploaded CPython 3.7m manylinux: glibc 2.17+ x86-64

ormsgpack-1.2.5-cp37-cp37m-macosx_10_9_x86_64.macosx_11_0_arm64.macosx_10_9_universal2.whl (392.8 kB view details)

Uploaded CPython 3.7m macOS 10.9+ universal2 (ARM64, x86-64) macOS 10.9+ x86-64 macOS 11.0+ ARM64

ormsgpack-1.2.5-cp37-cp37m-macosx_10_7_x86_64.whl (89.3 kB view details)

Uploaded CPython 3.7m macOS 10.7+ x86-64

File details

Details for the file ormsgpack-1.2.5.tar.gz.

File metadata

  • Download URL: ormsgpack-1.2.5.tar.gz
  • Upload date:
  • Size: 51.8 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.8.16

File hashes

Hashes for ormsgpack-1.2.5.tar.gz
Algorithm Hash digest
SHA256 f761a67ff2019d7e33f558de1622c815c71e35daf67548b183b2f9d6d985de2c
MD5 95432ec7b730950931e08d8781fe6d1f
BLAKE2b-256 9e5b259b60883cbe5622117b5d17c400e5b129ad488b3d825a9099fdf4e4a847

See more details on using hashes here.

File details

Details for the file ormsgpack-1.2.5-cp311-none-win_amd64.whl.

File metadata

  • Download URL: ormsgpack-1.2.5-cp311-none-win_amd64.whl
  • Upload date:
  • Size: 151.0 kB
  • Tags: CPython 3.11, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.11.1

File hashes

Hashes for ormsgpack-1.2.5-cp311-none-win_amd64.whl
Algorithm Hash digest
SHA256 56b7056285d81451523bd9d79d84bee2993110887759db20854a7901c3d7a6cd
MD5 50b043e6b69bdbca378acf4e0c68fb33
BLAKE2b-256 f74937e9c6d2619ff815fd23130d6ae6b283216d57d683fc697e13dcc16055ac

See more details on using hashes here.

File details

Details for the file ormsgpack-1.2.5-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for ormsgpack-1.2.5-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 c4ccfd2475cf7cf985c69ef81d975ff3bf9a3989901b6cca41eeb1e580f3e1be
MD5 2da45069608340bca62f78e9ab95477f
BLAKE2b-256 849059a2d7ad3bda702ef52b50c14a1c884f22ac97d69a55856b01da81b0eeac

See more details on using hashes here.

File details

Details for the file ormsgpack-1.2.5-cp311-cp311-macosx_10_9_x86_64.macosx_11_0_arm64.macosx_10_9_universal2.whl.

File metadata

File hashes

Hashes for ormsgpack-1.2.5-cp311-cp311-macosx_10_9_x86_64.macosx_11_0_arm64.macosx_10_9_universal2.whl
Algorithm Hash digest
SHA256 55500ebdb807e4fa0f797c753cbe9efbbf9bbac1dc9c6589e51bad75382b793c
MD5 a18b94759963e26557a973f27d32a4fa
BLAKE2b-256 9cd9ebd173e7f508e2230400803b9f275abc8002761dab7f15051f91172061e0

See more details on using hashes here.

File details

Details for the file ormsgpack-1.2.5-cp311-cp311-macosx_10_7_x86_64.whl.

File metadata

File hashes

Hashes for ormsgpack-1.2.5-cp311-cp311-macosx_10_7_x86_64.whl
Algorithm Hash digest
SHA256 b95efb8c1a27bd83190bec67b4b94951c84509b9bf79564dfbaa088e458f4c60
MD5 d1116979f7d2fe9f72726da5aea77fd4
BLAKE2b-256 670093c5f5420f668b215e811f34935f0c9541ab65c45171ea2fbc53f6d9e294

See more details on using hashes here.

File details

Details for the file ormsgpack-1.2.5-cp310-none-win_amd64.whl.

File metadata

  • Download URL: ormsgpack-1.2.5-cp310-none-win_amd64.whl
  • Upload date:
  • Size: 151.0 kB
  • Tags: CPython 3.10, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.10.9

File hashes

Hashes for ormsgpack-1.2.5-cp310-none-win_amd64.whl
Algorithm Hash digest
SHA256 5d0b823a6cef057ebedd34872c6df1f7b89d969faa1344ad11b93c5cce25c95b
MD5 786da526cf8724f67efc78bca2a34f3d
BLAKE2b-256 e41ca6cdef03a985402f334aaed3e2b6171dcad086168c6d0fc9d6d9bbb994bb

See more details on using hashes here.

File details

Details for the file ormsgpack-1.2.5-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for ormsgpack-1.2.5-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 55a2d59d0e443e60b1218adfe6e8a85cdb8427e49890bc6c9c1e11877fab2ec5
MD5 468890221fd3f1675e8d98f3eb15c405
BLAKE2b-256 8ea585b78a50a18ca69f53abd0521e508abb42603405413069d6deb93f1084ca

See more details on using hashes here.

File details

Details for the file ormsgpack-1.2.5-cp310-cp310-macosx_10_9_x86_64.macosx_11_0_arm64.macosx_10_9_universal2.whl.

File metadata

File hashes

Hashes for ormsgpack-1.2.5-cp310-cp310-macosx_10_9_x86_64.macosx_11_0_arm64.macosx_10_9_universal2.whl
Algorithm Hash digest
SHA256 afca4b4580469fdc50b16427c9cd71bf8fd2dabf7f709408f0891b350c9effa9
MD5 8dcbd410b7eda3c3c1e8a8c0a4272408
BLAKE2b-256 1ad423b679bc5297a0878ae3766f63794dbde0e9582ee375c89e4345c499d4b2

See more details on using hashes here.

File details

Details for the file ormsgpack-1.2.5-cp310-cp310-macosx_10_7_x86_64.whl.

File metadata

File hashes

Hashes for ormsgpack-1.2.5-cp310-cp310-macosx_10_7_x86_64.whl
Algorithm Hash digest
SHA256 95b97d8d184df1b75bfd3a460ba4aea32ac5b29382d96a282a04ae6cb7d7d6e5
MD5 79ee3303e8b271e4976e0bdc0ef4d163
BLAKE2b-256 ebae0c43b2108e8012f5ef9cf2ec01e53304f706ec5c47d5775bb7d14af8ea8b

See more details on using hashes here.

File details

Details for the file ormsgpack-1.2.5-cp39-none-win_amd64.whl.

File metadata

  • Download URL: ormsgpack-1.2.5-cp39-none-win_amd64.whl
  • Upload date:
  • Size: 151.0 kB
  • Tags: CPython 3.9, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.9.13

File hashes

Hashes for ormsgpack-1.2.5-cp39-none-win_amd64.whl
Algorithm Hash digest
SHA256 5621f63350e0506bb0c02f137ea9de587ebd1e90fc925a7ec2be6bdc2590e3b4
MD5 0203ef8b4635a499d57a2ac3def46e0b
BLAKE2b-256 2b95d85a47804cd99e271adf5b132d4270987657e7cbcfecf87b290479315165

See more details on using hashes here.

File details

Details for the file ormsgpack-1.2.5-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for ormsgpack-1.2.5-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 4f1e2eae32bbd6f8871f1df34e51a5fe5bc4da4ed371d40ae9b4ce2f4e8de2f4
MD5 c67d13acb808bd212e616a4cf4db4f2d
BLAKE2b-256 00a9ea1ecaae88579df8c091957797f70bea16b71cb2cc6d0990f2590bb150cd

See more details on using hashes here.

File details

Details for the file ormsgpack-1.2.5-cp39-cp39-macosx_10_9_x86_64.macosx_11_0_arm64.macosx_10_9_universal2.whl.

File metadata

File hashes

Hashes for ormsgpack-1.2.5-cp39-cp39-macosx_10_9_x86_64.macosx_11_0_arm64.macosx_10_9_universal2.whl
Algorithm Hash digest
SHA256 a423d470f06e6de73bd789dbb029c149309140ae85001c9c870755404bfb04f1
MD5 d6a2f52f17ea04947e2fe1a31b91cd8e
BLAKE2b-256 0a3362230478f1de68c8bab0cdb203037e3857e7822d2ec7d8baaa63e86c0530

See more details on using hashes here.

File details

Details for the file ormsgpack-1.2.5-cp39-cp39-macosx_10_7_x86_64.whl.

File metadata

File hashes

Hashes for ormsgpack-1.2.5-cp39-cp39-macosx_10_7_x86_64.whl
Algorithm Hash digest
SHA256 a7f1c5d76197d8d5d61c7ce15951db2f8e52ab7388c797e7a6b9d383752dc263
MD5 4bba9c9b2a866ce2fc3195bfd228ff5e
BLAKE2b-256 2e1529afc687664d9430c2b9f62753f8b6c1bbceead6765858f283e8bf7d6ea2

See more details on using hashes here.

File details

Details for the file ormsgpack-1.2.5-cp38-none-win_amd64.whl.

File metadata

  • Download URL: ormsgpack-1.2.5-cp38-none-win_amd64.whl
  • Upload date:
  • Size: 151.0 kB
  • Tags: CPython 3.8, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.8.10

File hashes

Hashes for ormsgpack-1.2.5-cp38-none-win_amd64.whl
Algorithm Hash digest
SHA256 16e09a3bedea1ff5ffe40b29ad566932520752e81964b55f20751a7a15edca83
MD5 bbd0d09025e5efffd3b793671b4c6c85
BLAKE2b-256 af650b803b0dcc26ee805d176dbc9bb1d09a5cb1939654501e6eafeda25635d3

See more details on using hashes here.

File details

Details for the file ormsgpack-1.2.5-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for ormsgpack-1.2.5-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 dc95c9cb26e99312e7f073aedecdce91a208e245f86e47a2cb719b27b2d1e9d1
MD5 645ac35dd6d6baec5d9719afdabffbcd
BLAKE2b-256 f3072f6c5647796d21568a5c0fe1f86052adc3aa79f449202373737bed92a4bd

See more details on using hashes here.

File details

Details for the file ormsgpack-1.2.5-cp38-cp38-macosx_10_9_x86_64.macosx_11_0_arm64.macosx_10_9_universal2.whl.

File metadata

File hashes

Hashes for ormsgpack-1.2.5-cp38-cp38-macosx_10_9_x86_64.macosx_11_0_arm64.macosx_10_9_universal2.whl
Algorithm Hash digest
SHA256 47e89c455b33fb4d6088a763a9e81203f5c88c6aabbcbdbd118bffbe0a4638ff
MD5 fbd7331cbf94e38cb5c56219aa30a3b4
BLAKE2b-256 b461cc5348aa7816d9339e80f4c86f50f13e54acd31970dc21e8c860acd2a527

See more details on using hashes here.

File details

Details for the file ormsgpack-1.2.5-cp38-cp38-macosx_10_7_x86_64.whl.

File metadata

File hashes

Hashes for ormsgpack-1.2.5-cp38-cp38-macosx_10_7_x86_64.whl
Algorithm Hash digest
SHA256 41eed49ea3ec4193d35fc17add4d838289c59a29c976891aec22019d8c2a2587
MD5 81dbb8efa5e0b9331b6ad8437cfb33ce
BLAKE2b-256 0c8a2dd3582dd9b5f3d5518bccc4f254b0d57c94e6b1fc01a194fda118a7fd5e

See more details on using hashes here.

File details

Details for the file ormsgpack-1.2.5-cp37-none-win_amd64.whl.

File metadata

  • Download URL: ormsgpack-1.2.5-cp37-none-win_amd64.whl
  • Upload date:
  • Size: 150.9 kB
  • Tags: CPython 3.7, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.7.9

File hashes

Hashes for ormsgpack-1.2.5-cp37-none-win_amd64.whl
Algorithm Hash digest
SHA256 6b25ae7c50c7bd2442a3c56ad507a656bd02ba2bb17fad8c57f7694297509287
MD5 2434274d7d4f442f809c12e8be2c18f5
BLAKE2b-256 26be5258ed62185c1611c9a56ca1d812c0012163f8f63e2ba2c05439d3fad76e

See more details on using hashes here.

File details

Details for the file ormsgpack-1.2.5-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for ormsgpack-1.2.5-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 6c05479bed27e9a0d33798628891a38d3e55c22fc851e37f76c73684196c74cc
MD5 c51f4c4bf258cbb4468c4944941bab9b
BLAKE2b-256 32b7ebacc4da2d69ac3d1de0f7d616485cea1aa41c0d632cd7e44d32bff23b0e

See more details on using hashes here.

File details

Details for the file ormsgpack-1.2.5-cp37-cp37m-macosx_10_9_x86_64.macosx_11_0_arm64.macosx_10_9_universal2.whl.

File metadata

File hashes

Hashes for ormsgpack-1.2.5-cp37-cp37m-macosx_10_9_x86_64.macosx_11_0_arm64.macosx_10_9_universal2.whl
Algorithm Hash digest
SHA256 9de408792fdc47795f2780ca950d95441b366f9d9e30fec35f0f1bbe2c2af6ef
MD5 ead35ae9ed8a8cbf1b06285a02cdb9b9
BLAKE2b-256 f6f8c8ba30ad4b81ad9f8202a30661db7a69ada13f480db02953cbb24acee8b3

See more details on using hashes here.

File details

Details for the file ormsgpack-1.2.5-cp37-cp37m-macosx_10_7_x86_64.whl.

File metadata

File hashes

Hashes for ormsgpack-1.2.5-cp37-cp37m-macosx_10_7_x86_64.whl
Algorithm Hash digest
SHA256 e5fb54e19be45f0079be496dcb8e6fea3e00731da6c5df445c68d33d701c4d48
MD5 23cbfc56d3891341371c4a3e3cafd7b7
BLAKE2b-256 bfcc2c42f7ea1db8de012374fb38248f799109cbf2a3e9646fdf2ef1f0e617d6

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page