Fast, correct Python msgpack library supporting dataclasses, datetimes, and numpy
Project description
ormsgpack
ormsgpack is a fast msgpack library for Python. It is a fork/reboot of orjson It serializes faster than msgpack-python and deserializes a bit slower (right now). It supports serialization of: dataclass, datetime, numpy, pydantic and UUID instances natively.
Its features and drawbacks compared to other Python msgpack libraries:
- serializes
dataclass
instances natively. - serializes
datetime
,date
, andtime
instances to RFC 3339 format, e.g., "1970-01-01T00:00:00+00:00" - serializes
numpy.ndarray
instances natively and faster. - serializes
pydantic.BaseModel
instances natively - serializes arbitrary types using a
default
hook
ormsgpack supports CPython 3.8, 3.9, 3.10, 3.11 and 3.12. ormsgpack does not support PyPy. Releases follow semantic versioning and serializing a new object type without an opt-in flag is considered a breaking change.
ormsgpack is licensed under both the Apache 2.0 and MIT licenses. The repository and issue tracker is github.com/aviramha/ormsgpack, and patches may be submitted there. There is a CHANGELOG available in the repository.
Usage
Install
To install a wheel from PyPI:
pip install --upgrade "pip>=19.3" # manylinux2014 support
pip install --upgrade ormsgpack
Notice that Linux environments with a pip
version shipped in 2018 or earlier
must first upgrade pip
to support manylinux2014
wheels.
To build a wheel, see packaging.
Quickstart
This is an example of serializing, with options specified, and deserializing:
>>> import ormsgpack, datetime, numpy
>>> data = {
"type": "job",
"created_at": datetime.datetime(1970, 1, 1),
"status": "🆗",
"payload": numpy.array([[1, 2], [3, 4]]),
}
>>> ormsgpack.packb(data, option=ormsgpack.OPT_NAIVE_UTC | ormsgpack.OPT_SERIALIZE_NUMPY)
b'\x84\xa4type\xa3job\xaacreated_at\xb91970-01-01T00:00:00+00:00\xa6status\xa4\xf0\x9f\x86\x97\xa7payload\x92\x92\x01\x02\x92\x03\x04'
>>> ormsgpack.unpackb(_)
{'type': 'job', 'created_at': '1970-01-01T00:00:00+00:00', 'status': '🆗', 'payload': [[1, 2], [3, 4]]}
Serialize
def packb(
__obj: Any,
default: Optional[Callable[[Any], Any]] = ...,
option: Optional[int] = ...,
) -> bytes: ...
packb()
serializes Python objects to msgpack.
It natively serializes
bytes
, str
, dict
, list
, tuple
, int
, float
, bool
,
dataclasses.dataclass
, typing.TypedDict
, datetime.datetime
,
datetime.date
, datetime.time
, uuid.UUID
, numpy.ndarray
, and
None
instances. It supports arbitrary types through default
. It
serializes subclasses of str
, int
, dict
, list
,
dataclasses.dataclass
, and enum.Enum
. It does not serialize subclasses
of tuple
to avoid serializing namedtuple
objects as arrays. To avoid
serializing subclasses, specify the option ormsgpack.OPT_PASSTHROUGH_SUBCLASS
.
The output is a bytes
object containing UTF-8.
The global interpreter lock (GIL) is held for the duration of the call.
It raises MsgpackEncodeError
on an unsupported type. This exception message
describes the invalid object with the error message
Type is not JSON serializable: ...
. To fix this, specify
default.
It raises MsgpackEncodeError
on a str
that contains invalid UTF-8.
It raises MsgpackEncodeError
if a dict
has a key of a type other than str
or bytes
,
unless OPT_NON_STR_KEYS
is specified.
It raises MsgpackEncodeError
if the output of default
recurses to handling by
default
more than 254 levels deep.
It raises MsgpackEncodeError
on circular references.
It raises MsgpackEncodeError
if a tzinfo
on a datetime object is
unsupported.
MsgpackEncodeError
is a subclass of TypeError
. This is for compatibility
with the standard library.
default
To serialize a subclass or arbitrary types, specify default
as a
callable that returns a supported type. default
may be a function,
lambda, or callable class instance. To specify that a type was not
handled by default
, raise an exception such as TypeError
.
>>> import ormsgpack, decimal
>>>
def default(obj):
if isinstance(obj, decimal.Decimal):
return str(obj)
raise TypeError
>>> ormsgpack.packb(decimal.Decimal("0.0842389659712649442845"))
MsgpackEncodeError: Type is not JSON serializable: decimal.Decimal
>>> ormsgpack.packb(decimal.Decimal("0.0842389659712649442845"), default=default)
b'\xb80.0842389659712649442845'
>>> ormsgpack.packb({1, 2}, default=default)
ormsgpack.MsgpackEncodeError: Type is not msgpack serializable: set
The default
callable may return an object that itself
must be handled by default
up to 254 times before an exception
is raised.
It is important that default
raise an exception if a type cannot be handled.
Python otherwise implicitly returns None
, which appears to the caller
like a legitimate value and is serialized:
>>> import ormsgpack, json, rapidjson
>>>
def default(obj):
if isinstance(obj, decimal.Decimal):
return str(obj)
>>> ormsgpack.unpackb(ormsgpack.packb({"set":{1, 2}}, default=default))
{'set': None}
To serialize a type as a MessagePack extension type, return an
ormsgpack.Ext
object. The instantiation arguments are an integer in
the range [0, 127]
and a bytes
object, defining the type and
value, respectively.
>>> import ormsgpack, decimal
>>>
def default(obj):
if isinstance(obj, decimal.Decimal):
return ormsgpack.Ext(0, str(obj).encode())
raise TypeError
>>> ormsgpack.packb(decimal.Decimal("0.0842389659712649442845"), default=default)
b'\xc7\x18\x000.0842389659712649442845'
option
To modify how data is serialized, specify option
. Each option
is an integer
constant in ormsgpack
. To specify multiple options, mask them together, e.g.,
option=ormsgpack.OPT_NON_STR_KEYS | ormsgpack.OPT_NAIVE_UTC
.
OPT_NAIVE_UTC
Serialize datetime.datetime
objects without a tzinfo
as UTC. This
has no effect on datetime.datetime
objects that have tzinfo
set.
>>> import ormsgpack, datetime
>>> ormsgpack.unpackb(ormsgpack.packb(
datetime.datetime(1970, 1, 1, 0, 0, 0),
))
"1970-01-01T00:00:00"
>>> ormsgpack.unpackb(ormsgpack.packb(
datetime.datetime(1970, 1, 1, 0, 0, 0),
option=ormsgpack.OPT_NAIVE_UTC,
))
"1970-01-01T00:00:00+00:00"
OPT_NON_STR_KEYS
Serialize dict
keys of type other than str
. This allows dict
keys
to be one of str
, int
, float
, bool
, None
, datetime.datetime
,
datetime.date
, datetime.time
, enum.Enum
, and uuid.UUID
. For comparison,
the standard library serializes str
, int
, float
, bool
or None
by
default.
>>> import ormsgpack, datetime, uuid
>>> ormsgpack.packb(
{uuid.UUID("7202d115-7ff3-4c81-a7c1-2a1f067b1ece"): [1, 2, 3]},
option=ormsgpack.OPT_NON_STR_KEYS,
)
>>> ormsgpack.packb(
{datetime.datetime(1970, 1, 1, 0, 0, 0): [1, 2, 3]},
option=ormsgpack.OPT_NON_STR_KEYS | ormsgpack.OPT_NAIVE_UTC,
)
These types are generally serialized how they would be as
values, e.g., datetime.datetime
is still an RFC 3339 string and respects
options affecting it.
This option has the risk of creating duplicate keys. This is because non-str
objects may serialize to the same str
as an existing key, e.g.,
{"1970-01-01T00:00:00+00:00": true, datetime.datetime(1970, 1, 1, 0, 0, 0): false}
.
The last key to be inserted to the dict
will be serialized last and a msgpack deserializer will presumably take the last
occurrence of a key (in the above, false
). The first value will be lost.
This option is not compatible with ormsgpack.OPT_SORT_KEYS
.
OPT_OMIT_MICROSECONDS
Do not serialize the microsecond
field on datetime.datetime
and
datetime.time
instances.
>>> import ormsgpack, datetime
>>> ormsgpack.packb(
datetime.datetime(1970, 1, 1, 0, 0, 0, 1),
)
>>> ormsgpack.packb(
datetime.datetime(1970, 1, 1, 0, 0, 0, 1),
option=ormsgpack.OPT_OMIT_MICROSECONDS,
)
OPT_PASSTHROUGH_BIG_INT
Enables passthrough of big (Python) ints. By setting this option, one can set a default
function for ints larger than 63 bits, smaller ints are still serialized efficiently.
>>> import ormsgpack
>>> ormsgpack.packb(
2**65,
)
TypeError: Integer exceeds 64-bit range
>>> ormsgpack.unpackb(
ormsgpack.packb(
2**65,
option=ormsgpack.OPT_PASSTHROUGH_BIG_INT,
default=lambda _: {"type": "bigint", "value": str(_) }
)
)
{'type': 'bigint', 'value': '36893488147419103232'}
OPT_PASSTHROUGH_DATACLASS
Passthrough dataclasses.dataclass
instances to default
. This allows
customizing their output but is much slower.
>>> import ormsgpack, dataclasses
>>>
@dataclasses.dataclass
class User:
id: str
name: str
password: str
def default(obj):
if isinstance(obj, User):
return {"id": obj.id, "name": obj.name}
raise TypeError
>>> ormsgpack.packb(User("3b1", "asd", "zxc"))
b'\x83\xa2id\xa33b1\xa4name\xa3asd\xa8password\xa3zxc'
>>> ormsgpack.packb(User("3b1", "asd", "zxc"), option=ormsgpack.OPT_PASSTHROUGH_DATACLASS)
TypeError: Type is not msgpack serializable: User
>>> ormsgpack.packb(
User("3b1", "asd", "zxc"),
option=ormsgpack.OPT_PASSTHROUGH_DATACLASS,
default=default,
)
b'\x82\xa2id\xa33b1\xa4name\xa3asd'
OPT_PASSTHROUGH_DATETIME
Passthrough datetime.datetime
, datetime.date
, and datetime.time
instances
to default
. This allows serializing datetimes to a custom format, e.g.,
HTTP dates:
>>> import ormsgpack, datetime
>>>
def default(obj):
if isinstance(obj, datetime.datetime):
return obj.strftime("%a, %d %b %Y %H:%M:%S GMT")
raise TypeError
>>> ormsgpack.packb({"created_at": datetime.datetime(1970, 1, 1)})
b'\x81\xaacreated_at\xb31970-01-01T00:00:00'
>>> ormsgpack.packb({"created_at": datetime.datetime(1970, 1, 1)}, option=ormsgpack.OPT_PASSTHROUGH_DATETIME)
TypeError: Type is not msgpack serializable: datetime.datetime
>>> ormsgpack.packb(
{"created_at": datetime.datetime(1970, 1, 1)},
option=ormsgpack.OPT_PASSTHROUGH_DATETIME,
default=default,
)
b'\x81\xaacreated_at\xbdThu, 01 Jan 1970 00:00:00 GMT'
This does not affect datetimes in dict
keys if using OPT_NON_STR_KEYS.
OPT_PASSTHROUGH_SUBCLASS
Passthrough subclasses of builtin types to default
.
>>> import ormsgpack
>>>
class Secret(str):
pass
def default(obj):
if isinstance(obj, Secret):
return "******"
raise TypeError
>>> ormsgpack.packb(Secret("zxc"))
b'\xa3zxc'
>>> ormsgpack.packb(Secret("zxc"), option=ormsgpack.OPT_PASSTHROUGH_SUBCLASS)
TypeError: Type is not msgpack serializable: Secret
>>> ormsgpack.packb(Secret("zxc"), option=ormsgpack.OPT_PASSTHROUGH_SUBCLASS, default=default)
b'\xa6******'
This does not affect serializing subclasses as dict
keys if using
OPT_NON_STR_KEYS.
OPT_PASSTHROUGH_TUPLE
Passthrough tuples to default
.
>>> import ormsgpack
>>> ormsgpack.unpackb(
ormsgpack.packb(
(9193, "test", 42),
)
)
[9193, 'test', 42]
>>> ormsgpack.unpackb(
ormsgpack.packb(
(9193, "test", 42),
option=ormsgpack.OPT_PASSTHROUGH_TUPLE,
default=lambda _: {"type": "tuple", "value": list(_)}
)
)
{'type': 'tuple', 'value': [9193, 'test', 42]}
OPT_SERIALIZE_NUMPY
Serialize numpy.ndarray
instances. For more, see
numpy.
OPT_SERIALIZE_PYDANTIC
Serialize pydantic.BaseModel
instances.
OPT_SORT_KEYS
Serialize dict
keys in sorted order. The default is to serialize in an
unspecified order. This is equivalent to sort_keys=True
in the standard
library.
This can be used to ensure the order is deterministic for hashing or tests. It has a substantial performance penalty and is not recommended in general.
>>> import ormsgpack
>>> ormsgpack.packb({"b": 1, "c": 2, "a": 3})
b'\x83\xa1b\x01\xa1c\x02\xa1a\x03'
>>> ormsgpack.packb({"b": 1, "c": 2, "a": 3}, option=ormsgpack.OPT_SORT_KEYS)
b'\x83\xa1a\x03\xa1b\x01\xa1c\x02'
The sorting is not collation/locale-aware:
>>> import ormsgpack
>>> ormsgpack.packb({"a": 1, "ä": 2, "A": 3}, option=ormsgpack.OPT_SORT_KEYS)
b'\x83\xa1A\x03\xa1a\x01\xa2\xc3\xa4\x02'
This is the same sorting behavior as the standard library.
dataclass
also serialize as maps but this has no effect on them.
OPT_UTC_Z
Serialize a UTC timezone on datetime.datetime
instances as Z
instead
of +00:00
.
>>> import ormsgpack, datetime
>>> ormsgpack.packb(
datetime.datetime(1970, 1, 1, 0, 0, 0, tzinfo=datetime.timezone.utc),
)
b'"1970-01-01T00:00:00+00:00"'
>>> ormsgpack.packb(
datetime.datetime(1970, 1, 1, 0, 0, 0, tzinfo=datetime.timezone.utc),
option=ormsgpack.OPT_UTC_Z
)
b'"1970-01-01T00:00:00Z"'
Deserialize
def unpackb(
__obj: Union[bytes, bytearray, memoryview],
/,
ext_hook: Optional[Callable[[int, bytes], Any]] = ...,
option: Optional[int] = ...,
) -> Any: ...
unpackb()
deserializes msgpack to Python objects. It deserializes to dict
,
list
, int
, float
, str
, bool
, bytes
and None
objects.
bytes
, bytearray
, memoryview
input are accepted.
ormsgpack maintains a cache of map keys for the duration of the process. This causes a net reduction in memory usage by avoiding duplicate strings. The keys must be at most 64 bytes to be cached and 512 entries are stored.
The global interpreter lock (GIL) is held for the duration of the call.
It raises MsgpackDecodeError
if given an invalid type or invalid
msgpack.
MsgpackDecodeError
is a subclass of ValueError
.
ext_hook
To deserialize extension types, specify the optional ext_hook
argument. The value should be a callable and is invoked with the
extension type and value as arguments.
>>> import ormsgpack, decimal
>>>
def ext_hook(tag, data):
if tag == 0:
return decimal.Decimal(data.decode())
raise TypeError
>>> ormsgpack.packb(
ormsgpack.Ext(0, str(decimal.Decimal("0.0842389659712649442845")).encode())
)
>>> ormsgpack.unpackb(_, ext_hook=ext_hook)
Decimal('0.0842389659712649442845')
option
unpackb()
supports the OPT_NON_STR_KEYS
option, that is similar to original msgpack's strict_map_keys=False
.
Be aware that this option is considered unsafe and disabled by default in msgpack due to possibility of HashDoS.
Types
dataclass
ormsgpack serializes instances of dataclasses.dataclass
natively. It serializes
instances 40-50x as fast as other libraries and avoids a severe slowdown seen
in other libraries compared to serializing dict
.
It is supported to pass all variants of dataclasses, including dataclasses
using __slots__
, frozen dataclasses, those with optional or default
attributes, and subclasses. There is a performance benefit to not
using __slots__
.
Dataclasses are serialized as maps, with every attribute serialized and in the order given on class definition:
>>> import dataclasses, ormsgpack, typing
@dataclasses.dataclass
class Member:
id: int
active: bool = dataclasses.field(default=False)
@dataclasses.dataclass
class Object:
id: int
name: str
members: typing.List[Member]
>>> ormsgpack.packb(Object(1, "a", [Member(1, True), Member(2)]))
b'\x83\xa2id\x01\xa4name\xa1a\xa7members\x92\x82\xa2id\x01\xa6active\xc3\x82\xa2id\x02\xa6active\xc2'
Users may wish to control how dataclass instances are serialized, e.g.,
to not serialize an attribute or to change the name of an
attribute when serialized. ormsgpack may implement support using the
metadata mapping on field
attributes,
e.g., field(metadata={"json_serialize": False})
, if use cases are clear.
Performance
--------------------------------------------------------------------------------- benchmark 'dataclass': 2 tests --------------------------------------------------------------------------------
Name (time in ms) Min Max Mean StdDev Median IQR Outliers OPS Rounds Iterations
-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------
test_dataclass_ormsgpack 3.4248 (1.0) 7.7949 (1.0) 3.6266 (1.0) 0.3293 (1.0) 3.5815 (1.0) 0.0310 (1.0) 4;34 275.7434 (1.0) 240 1
test_dataclass_msgpack 140.2774 (40.96) 143.6087 (18.42) 141.3847 (38.99) 1.0038 (3.05) 141.1823 (39.42) 0.7304 (23.60) 2;1 7.0729 (0.03) 8 1
-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------
datetime
ormsgpack serializes datetime.datetime
objects to
RFC 3339 format,
e.g., "1970-01-01T00:00:00+00:00". This is a subset of ISO 8601 and
compatible with isoformat()
in the standard library.
>>> import ormsgpack, datetime, zoneinfo
>>> ormsgpack.packb(
datetime.datetime(2018, 12, 1, 2, 3, 4, 9, tzinfo=zoneinfo.ZoneInfo('Australia/Adelaide'))
)
>>> ormsgpack.unpackb(_)
"2018-12-01T02:03:04.000009+10:30"
>>> ormsgpack.packb(
datetime.datetime.fromtimestamp(4123518902).replace(tzinfo=datetime.timezone.utc)
)
>>> ormsgpack.unpackb(_)
"2100-09-01T21:55:02+00:00"
>>> ormsgpack.packb(
datetime.datetime.fromtimestamp(4123518902)
)
>>> ormsgpack.unpackb(_)
"2100-09-01T21:55:02"
datetime.datetime
supports instances with a tzinfo
that is None
,
datetime.timezone.utc
, a timezone instance from the python3.9+ zoneinfo
module, or a timezone instance from the third-party pendulum
, pytz
, or
dateutil
/arrow
libraries.
datetime.time
objects must not have a tzinfo
.
>>> import ormsgpack, datetime
>>> ormsgpack.packb(datetime.time(12, 0, 15, 290))
>>> ormsgpack.unpackb(_)
"12:00:15.000290"
datetime.date
objects will always serialize.
>>> import ormsgpack, datetime
>>> ormsgpack.packb(datetime.date(1900, 1, 2))
>>> ormsgpack.unpackb(_)
"1900-01-02"
Errors with tzinfo
result in MsgpackEncodeError
being raised.
It is faster to have ormsgpack serialize datetime objects than to do so
before calling packb()
. If using an unsupported type such as
pendulum.datetime
, use default
.
To disable serialization of datetime
objects specify the option
ormsgpack.OPT_PASSTHROUGH_DATETIME
.
To use "Z" suffix instead of "+00:00" to indicate UTC ("Zulu") time, use the option
ormsgpack.OPT_UTC_Z
.
To assume datetimes without timezone are UTC, se the option ormsgpack.OPT_NAIVE_UTC
.
enum
ormsgpack serializes enums natively. Options apply to their values.
>>> import enum, datetime, ormsgpack
>>>
class DatetimeEnum(enum.Enum):
EPOCH = datetime.datetime(1970, 1, 1, 0, 0, 0)
>>> ormsgpack.packb(DatetimeEnum.EPOCH)
>>> ormsgpack.unpackb(_)
"1970-01-01T00:00:00"
>>> ormsgpack.packb(DatetimeEnum.EPOCH, option=ormsgpack.OPT_NAIVE_UTC)
>>> ormsgpack.unpackb(_)
"1970-01-01T00:00:00+00:00"
Enums with members that are not supported types can be serialized using
default
:
>>> import enum, ormsgpack
>>>
class Custom:
def __init__(self, val):
self.val = val
def default(obj):
if isinstance(obj, Custom):
return obj.val
raise TypeError
class CustomEnum(enum.Enum):
ONE = Custom(1)
>>> ormsgpack.packb(CustomEnum.ONE, default=default)
>>> ormsgpack.unpackb(_)
1
float
ormsgpack serializes and deserializes double precision floats with no loss of precision and consistent rounding.
int
ormsgpack serializes and deserializes 64-bit integers by default. The range supported is a signed 64-bit integer's minimum (-9223372036854775807) to an unsigned 64-bit integer's maximum (18446744073709551615).
numpy
ormsgpack natively serializes numpy.ndarray
and individual
numpy.float64
, numpy.float32
,
numpy.int64
, numpy.int32
, numpy.int16
, numpy.int8
,
numpy.uint64
, numpy.uint32
, numpy.uint16
, numpy.uint8
,
numpy.uintp
, numpy.intp
, and numpy.bool
instances.
ormsgpack is faster than all compared libraries at serializing
numpy instances. Serializing numpy data requires specifying
option=ormsgpack.OPT_SERIALIZE_NUMPY
.
>>> import ormsgpack, numpy
>>> ormsgpack.packb(
numpy.array([[1, 2, 3], [4, 5, 6]]),
option=ormsgpack.OPT_SERIALIZE_NUMPY,
)
>>> ormsgpack.unpackb(_)
[[1,2,3],[4,5,6]]
The array must be a contiguous C array (C_CONTIGUOUS
) and one of the
supported datatypes.
If an array is not a contiguous C array or contains an supported datatype,
ormsgpack falls through to default
. In default
, obj.tolist()
can be
specified. If an array is malformed, which is not expected,
ormsgpack.MsgpackEncodeError
is raised.
Performance
---------------------------------------------------------------------------------- benchmark 'numpy float64': 2 tests ---------------------------------------------------------------------------------
Name (time in ms) Min Max Mean StdDev Median IQR Outliers OPS Rounds Iterations
-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------
test_numpy_ormsgpack[float64] 77.9625 (1.0) 85.2507 (1.0) 79.0326 (1.0) 1.9043 (1.0) 78.5505 (1.0) 0.7408 (1.0) 1;1 12.6530 (1.0) 13 1
test_numpy_msgpack[float64] 511.5176 (6.56) 606.9395 (7.12) 559.0017 (7.07) 44.0661 (23.14) 572.5499 (7.29) 81.2972 (109.75) 3;0 1.7889 (0.14) 5 1
-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------
------------------------------------------------------------------------------------- benchmark 'numpy int32': 2 tests -------------------------------------------------------------------------------------
Name (time in ms) Min Max Mean StdDev Median IQR Outliers OPS Rounds Iterations
------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------
test_numpy_ormsgpack[int32] 197.8751 (1.0) 210.3111 (1.0) 201.1033 (1.0) 5.1886 (1.0) 198.8518 (1.0) 3.8297 (1.0) 1;1 4.9726 (1.0) 5 1
test_numpy_msgpack[int32] 1,363.8515 (6.89) 1,505.4747 (7.16) 1,428.2127 (7.10) 53.4176 (10.30) 1,425.3516 (7.17) 72.8064 (19.01) 2;0 0.7002 (0.14) 5 1
------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------
-------------------------------------------------------------------------------- benchmark 'numpy int8': 2 tests ---------------------------------------------------------------------------------
Name (time in ms) Min Max Mean StdDev Median IQR Outliers OPS Rounds Iterations
--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------
test_numpy_ormsgpack[int8] 107.8013 (1.0) 113.7336 (1.0) 109.0364 (1.0) 1.7805 (1.0) 108.3574 (1.0) 0.4066 (1.0) 1;2 9.1712 (1.0) 10 1
test_numpy_msgpack[int8] 685.4149 (6.36) 703.2958 (6.18) 693.2396 (6.36) 7.9572 (4.47) 691.5435 (6.38) 14.4142 (35.45) 1;0 1.4425 (0.16) 5 1
--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------
------------------------------------------------------------------------------------- benchmark 'numpy npbool': 2 tests --------------------------------------------------------------------------------------
Name (time in ms) Min Max Mean StdDev Median IQR Outliers OPS Rounds Iterations
--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------
test_numpy_ormsgpack[npbool] 87.9005 (1.0) 89.5460 (1.0) 88.7928 (1.0) 0.5098 (1.0) 88.8508 (1.0) 0.6609 (1.0) 4;0 11.2622 (1.0) 12 1
test_numpy_msgpack[npbool] 1,095.0599 (12.46) 1,176.3442 (13.14) 1,120.5916 (12.62) 32.9993 (64.73) 1,110.4216 (12.50) 38.4189 (58.13) 1;0 0.8924 (0.08) 5 1
--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------
--------------------------------------------------------------------------------- benchmark 'numpy uint8': 2 tests ---------------------------------------------------------------------------------
Name (time in ms) Min Max Mean StdDev Median IQR Outliers OPS Rounds Iterations
----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------
test_numpy_ormsgpack[uint8] 133.1743 (1.0) 134.7246 (1.0) 134.2793 (1.0) 0.4946 (1.0) 134.3120 (1.0) 0.4492 (1.0) 1;1 7.4472 (1.0) 8 1
test_numpy_msgpack[uint8] 727.1393 (5.46) 824.8247 (6.12) 775.7032 (5.78) 34.9887 (70.73) 775.9595 (5.78) 36.2824 (80.78) 2;0 1.2892 (0.17) 5 1
----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------
uuid
ormsgpack serializes uuid.UUID
instances to
RFC 4122 format, e.g.,
"f81d4fae-7dec-11d0-a765-00a0c91e6bf6".
>>> import ormsgpack, uuid
>>> ormsgpack.packb(uuid.UUID('f81d4fae-7dec-11d0-a765-00a0c91e6bf6'))
>>> ormsgpack.unpackb(_)
"f81d4fae-7dec-11d0-a765-00a0c91e6bf6"
>>> ormsgpack.packb(uuid.uuid5(uuid.NAMESPACE_DNS, "python.org"))
>>> ormsgpack.unpackb(_)
"886313e1-3b8a-5372-9b90-0c9aee199e5d"
Pydantic
ormsgpack serializes pydantic.BaseModel
instances natively.
Performance
-------------------------------------------------------------------------------- benchmark 'pydantic': 2 tests ---------------------------------------------------------------------------------
Name (time in ms) Min Max Mean StdDev Median IQR Outliers OPS Rounds Iterations
------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------
test_pydantic_ormsgpack 4.3918 (1.0) 12.6521 (1.0) 4.8550 (1.0) 1.1455 (3.98) 4.6101 (1.0) 0.0662 (1.0) 11;24 205.9727 (1.0) 204 1
test_pydantic_msgpack 124.5500 (28.36) 125.5427 (9.92) 125.0582 (25.76) 0.2877 (1.0) 125.0855 (27.13) 0.2543 (3.84) 2;0 7.9963 (0.04) 8 1
------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------
Latency
Graphs
Data
----------------------------------------------------------------------------- benchmark 'canada packb': 2 tests ------------------------------------------------------------------------------
Name (time in ms) Min Max Mean StdDev Median IQR Outliers OPS Rounds Iterations
----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------
test_ormsgpack_packb[canada] 3.5302 (1.0) 3.8939 (1.0) 3.7319 (1.0) 0.0563 (1.0) 3.7395 (1.0) 0.0484 (1.0) 56;22 267.9571 (1.0) 241 1
test_msgpack_packb[canada] 8.8642 (2.51) 14.0432 (3.61) 9.3660 (2.51) 0.5649 (10.03) 9.2983 (2.49) 0.0982 (2.03) 3;11 106.7691 (0.40) 106 1
----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------
------------------------------------------------------------------------------- benchmark 'canada unpackb': 2 tests --------------------------------------------------------------------------------
Name (time in ms) Min Max Mean StdDev Median IQR Outliers OPS Rounds Iterations
----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------
test_msgpack_unpackb[canada] 10.1176 (1.0) 62.0466 (1.18) 33.4806 (1.0) 18.8279 (1.0) 46.6582 (1.0) 38.5921 (1.02) 30;0 29.8680 (1.0) 67 1
test_ormsgpack_unpackb[canada] 11.3992 (1.13) 52.6587 (1.0) 34.1842 (1.02) 18.9461 (1.01) 47.6456 (1.02) 37.8024 (1.0) 8;0 29.2533 (0.98) 20 1
----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------
----------------------------------------------------------------------------- benchmark 'citm_catalog packb': 2 tests -----------------------------------------------------------------------------
Name (time in ms) Min Max Mean StdDev Median IQR Outliers OPS Rounds Iterations
---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------
test_ormsgpack_packb[citm_catalog] 1.8024 (1.0) 2.1259 (1.0) 1.9487 (1.0) 0.0346 (1.0) 1.9525 (1.0) 0.0219 (1.0) 79;60 513.1650 (1.0) 454 1
test_msgpack_packb[citm_catalog] 3.4195 (1.90) 3.8128 (1.79) 3.6928 (1.90) 0.0535 (1.55) 3.7009 (1.90) 0.0250 (1.14) 47;49 270.7958 (0.53) 257 1
---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------
------------------------------------------------------------------------------ benchmark 'citm_catalog unpackb': 2 tests ------------------------------------------------------------------------------
Name (time in ms) Min Max Mean StdDev Median IQR Outliers OPS Rounds Iterations
-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------
test_ormsgpack_unpackb[citm_catalog] 5.6986 (1.0) 46.1843 (1.0) 14.2491 (1.0) 15.9791 (1.0) 6.1051 (1.0) 0.3074 (1.0) 5;5 70.1798 (1.0) 23 1
test_msgpack_unpackb[citm_catalog] 7.2600 (1.27) 56.6642 (1.23) 16.4095 (1.15) 16.3257 (1.02) 7.7364 (1.27) 0.4944 (1.61) 28;29 60.9404 (0.87) 125 1
-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------
----------------------------------------------------------------------------------- benchmark 'github packb': 2 tests -----------------------------------------------------------------------------------
Name (time in us) Min Max Mean StdDev Median IQR Outliers OPS (Kops/s) Rounds Iterations
---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------
test_ormsgpack_packb[github] 73.0000 (1.0) 215.9000 (1.0) 80.4826 (1.0) 4.8889 (1.0) 80.3000 (1.0) 1.1000 (1.83) 866;1118 12.4250 (1.0) 6196 1
test_msgpack_packb[github] 103.8000 (1.42) 220.8000 (1.02) 112.8049 (1.40) 4.9686 (1.02) 113.0000 (1.41) 0.6000 (1.0) 1306;1560 8.8649 (0.71) 7028 1
---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------
----------------------------------------------------------------------------------- benchmark 'github unpackb': 2 tests -----------------------------------------------------------------------------------
Name (time in us) Min Max Mean StdDev Median IQR Outliers OPS (Kops/s) Rounds Iterations
-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------
test_ormsgpack_unpackb[github] 201.3000 (1.0) 318.5000 (1.0) 219.0861 (1.0) 6.7340 (1.0) 219.1000 (1.0) 1.2000 (1.0) 483;721 4.5644 (1.0) 3488 1
test_msgpack_unpackb[github] 289.8000 (1.44) 436.0000 (1.37) 314.9631 (1.44) 9.4130 (1.40) 315.1000 (1.44) 2.3000 (1.92) 341;557 3.1750 (0.70) 2477 1
-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------
--------------------------------------------------------------------------------------- benchmark 'twitter packb': 2 tests ---------------------------------------------------------------------------------------
Name (time in us) Min Max Mean StdDev Median IQR Outliers OPS Rounds Iterations
------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------
test_ormsgpack_packb[twitter] 820.7000 (1.0) 2,945.2000 (2.03) 889.3791 (1.0) 78.4139 (2.43) 884.2000 (1.0) 12.5250 (1.0) 4;76 1,124.3799 (1.0) 809 1
test_msgpack_packb[twitter] 1,209.3000 (1.47) 1,451.2000 (1.0) 1,301.3615 (1.46) 32.2147 (1.0) 1,306.7000 (1.48) 14.1000 (1.13) 118;138 768.4260 (0.68) 592 1
------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------
------------------------------------------------------------------------------ benchmark 'twitter unpackb': 2 tests -----------------------------------------------------------------------------
Name (time in ms) Min Max Mean StdDev Median IQR Outliers OPS Rounds Iterations
-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------
test_ormsgpack_unpackb[twitter] 2.7097 (1.0) 41.1530 (1.0) 3.2721 (1.0) 3.5860 (1.03) 2.8868 (1.0) 0.0614 (1.32) 4;38 305.6098 (1.0) 314 1
test_msgpack_unpackb[twitter] 3.8079 (1.41) 42.0617 (1.02) 4.4459 (1.36) 3.4893 (1.0) 4.1097 (1.42) 0.0465 (1.0) 2;54 224.9267 (0.74) 228 1
-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------
Reproducing
The above was measured using Python 3.7.9 on Azure Linux VM (x86_64) with ormsgpack 0.2.1 and msgpack 1.0.2.
The latency results can be reproduced using ./scripts/benchmark.sh
and graphs using
pytest --benchmark-histogram benchmarks/bench_*
.
Questions
Why can't I install it from PyPI?
Probably pip
needs to be upgraded to version 20.3 or later to support
the latest manylinux_x_y or universal2 wheel formats.
Will it deserialize to dataclasses, UUIDs, decimals, etc or support object_hook?
No. This requires a schema specifying what types are expected and how to handle errors etc. This is addressed by data validation libraries a level above this.
Will it support PyPy?
If someone implements it well.
Packaging
To package ormsgpack requires Rust 1.65
or newer and the maturin build
tool. The default feature unstable-simd
enables the usage of SIMD
operations and requires nightly Rust. The recommended build command
is:
maturin build --release --strip
ormsgpack is tested for amd64 on Linux, macOS, and Windows.
There are no runtime dependencies other than libc.
License
orjson was written by ijl <ijl@mailbox.org>, copyright 2018 - 2021, licensed under both the Apache 2 and MIT licenses.
ormsgpack was forked from orjson by Aviram Hassan and is now maintained by Emanuele Giaquinta (@exg), licensed same as orjson.
Project details
Release history Release notifications | RSS feed
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distribution
Built Distributions
File details
Details for the file ormsgpack-1.4.0.tar.gz
.
File metadata
- Download URL: ormsgpack-1.4.0.tar.gz
- Upload date:
- Size: 52.7 kB
- Tags: Source
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/4.0.2 CPython/3.8.18
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 87df23a274394d3d570b8820c9da7908713af145c3dbf6c517052d3c9cfbac95 |
|
MD5 | 880b0a082601e968a974bfe2765b8191 |
|
BLAKE2b-256 | 71146e85a92af0cecf01b04cdb1a93bf467983d04a3952b0199270a47764974c |
File details
Details for the file ormsgpack-1.4.0-cp312-none-win_amd64.whl
.
File metadata
- Download URL: ormsgpack-1.4.0-cp312-none-win_amd64.whl
- Upload date:
- Size: 151.1 kB
- Tags: CPython 3.12, Windows x86-64
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/4.0.2 CPython/3.12.0
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | e4763b79f048b1eb8f79b0b2f5e678229c8d6409721a32c4410cebfe5d5831f8 |
|
MD5 | 68865452d40864412e8ae4cb43d6a6ac |
|
BLAKE2b-256 | 9ec708fee8c0ee6afbdee162ec1853aa270c5ba1576c7330c67b17a43864f6a0 |
File details
Details for the file ormsgpack-1.4.0-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
.
File metadata
- Download URL: ormsgpack-1.4.0-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
- Upload date:
- Size: 250.0 kB
- Tags: CPython 3.12, manylinux: glibc 2.17+ x86-64
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/4.0.2 CPython/3.12.0
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | e6256300b94c3739db4748c7f13af9ac8956445eec67acda51f45eed411ac512 |
|
MD5 | 6a1a6c614948eb9c38d201f23b6c9b65 |
|
BLAKE2b-256 | 664c3fc52f0f4ef617a01687b7b8ca5fd1bca17e9690778276f5e863315c4c5a |
File details
Details for the file ormsgpack-1.4.0-cp312-cp312-macosx_10_12_x86_64.whl
.
File metadata
- Download URL: ormsgpack-1.4.0-cp312-cp312-macosx_10_12_x86_64.whl
- Upload date:
- Size: 91.4 kB
- Tags: CPython 3.12, macOS 10.12+ x86-64
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/4.0.2 CPython/3.12.0
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 586645bbee8c2495c1e0b0e7a1f4c68397c910f346ac400e0d76ff53f4a1a84b |
|
MD5 | 17c4b4ba1af63b332d129b78324ed432 |
|
BLAKE2b-256 | 1c8c32bb8d46e9a0d8f3dd8f064c64d88ce2584befcb12bb0a66c1ebf78f4e98 |
File details
Details for the file ormsgpack-1.4.0-cp312-cp312-macosx_10_12_x86_64.macosx_11_0_arm64.macosx_10_12_universal2.whl
.
File metadata
- Download URL: ormsgpack-1.4.0-cp312-cp312-macosx_10_12_x86_64.macosx_11_0_arm64.macosx_10_12_universal2.whl
- Upload date:
- Size: 413.3 kB
- Tags: CPython 3.12, macOS 10.12+ universal2 (ARM64, x86-64), macOS 10.12+ x86-64, macOS 11.0+ ARM64
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/4.0.2 CPython/3.12.0
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | e5e0588e2f9969b4ec73bdafb0320f2a9c9f58cef5c099733bf41d5e14466486 |
|
MD5 | 0506c1b1d7f4286deae135470220a88e |
|
BLAKE2b-256 | 78662702af04600508c3205ec454d0d0061756e38f36b5eeb3a5decaa4f3d906 |
File details
Details for the file ormsgpack-1.4.0-cp311-none-win_amd64.whl
.
File metadata
- Download URL: ormsgpack-1.4.0-cp311-none-win_amd64.whl
- Upload date:
- Size: 150.9 kB
- Tags: CPython 3.11, Windows x86-64
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/4.0.2 CPython/3.11.6
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | f5936add76182eb84bfcb559eec56d4e5aabe47a27178412e1b75aa5a9bb6ffc |
|
MD5 | 4047bc090943b70928ef60e5494a95b6 |
|
BLAKE2b-256 | ba7fd2bda649bb90f5a1097bff00b91477dbbcc755ec147f14bd293275eb79c5 |
File details
Details for the file ormsgpack-1.4.0-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
.
File metadata
- Download URL: ormsgpack-1.4.0-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
- Upload date:
- Size: 249.7 kB
- Tags: CPython 3.11, manylinux: glibc 2.17+ x86-64
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/4.0.2 CPython/3.11.6
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | f71c5486905be988748bd4904a91552eadaeb257eec793abf4a659db3eb588d9 |
|
MD5 | 382df9da59b1bea1cdb63b5d697bb87f |
|
BLAKE2b-256 | 64387217c4f2ea08d3ae941e60bf593c79c09dd30ec465fcd0fbd49be197dc81 |
File details
Details for the file ormsgpack-1.4.0-cp311-cp311-macosx_10_12_x86_64.whl
.
File metadata
- Download URL: ormsgpack-1.4.0-cp311-cp311-macosx_10_12_x86_64.whl
- Upload date:
- Size: 91.3 kB
- Tags: CPython 3.11, macOS 10.12+ x86-64
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/4.0.2 CPython/3.11.6
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | a1fb2856becb9f9db1003ae7503fb897668f9ae1ad18d1e627fd8a07b054a672 |
|
MD5 | 4b1d6e2f5404bdd61ce5fbb514892412 |
|
BLAKE2b-256 | 40112066d47d88dd0a87f3921ba11b2932680e772243ef7549ed44a2405c8ae9 |
File details
Details for the file ormsgpack-1.4.0-cp311-cp311-macosx_10_12_x86_64.macosx_11_0_arm64.macosx_10_12_universal2.whl
.
File metadata
- Download URL: ormsgpack-1.4.0-cp311-cp311-macosx_10_12_x86_64.macosx_11_0_arm64.macosx_10_12_universal2.whl
- Upload date:
- Size: 413.3 kB
- Tags: CPython 3.11, macOS 10.12+ universal2 (ARM64, x86-64), macOS 10.12+ x86-64, macOS 11.0+ ARM64
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/4.0.2 CPython/3.11.6
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 4ed447af6e296e0246234e1a233cd8b0a973b0d1ae806f20f2a375228a27c841 |
|
MD5 | f36216e60bb4e3e7c1bd5166f8308632 |
|
BLAKE2b-256 | 757998ae88cccc9e0ba9c7c463b697465428814b9dd8770cd7d381c8bdf072bc |
File details
Details for the file ormsgpack-1.4.0-cp310-none-win_amd64.whl
.
File metadata
- Download URL: ormsgpack-1.4.0-cp310-none-win_amd64.whl
- Upload date:
- Size: 150.9 kB
- Tags: CPython 3.10, Windows x86-64
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/4.0.2 CPython/3.10.11
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 1ca7527c01f9e723d456585fae262400296bbdc73b813248ef4c8030c6d9c69b |
|
MD5 | dc584c7bed2512c046b6825a2c58610a |
|
BLAKE2b-256 | 9fb2e778073d9fd0f36c7a7a09099791f86835eb9669d57868a6c2c2c640d915 |
File details
Details for the file ormsgpack-1.4.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
.
File metadata
- Download URL: ormsgpack-1.4.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
- Upload date:
- Size: 249.7 kB
- Tags: CPython 3.10, manylinux: glibc 2.17+ x86-64
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/4.0.2 CPython/3.10.13
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 3f41751ccfd96b49725c1525818bf5d3c83cde0132a5f1a8e4ecd73fff4df5ea |
|
MD5 | cd06b2afb4b5bc26d61a406747e4621b |
|
BLAKE2b-256 | f8a839acf8b29f8628c4b461362ce18e5880de0da1c7fa38be132823cfbe5271 |
File details
Details for the file ormsgpack-1.4.0-cp310-cp310-macosx_10_12_x86_64.whl
.
File metadata
- Download URL: ormsgpack-1.4.0-cp310-cp310-macosx_10_12_x86_64.whl
- Upload date:
- Size: 91.3 kB
- Tags: CPython 3.10, macOS 10.12+ x86-64
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/4.0.2 CPython/3.10.13
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 3f014c743a92ae17b22f67b426ef50fee54fe2fceaff6747ee9fea5b412b8461 |
|
MD5 | 0f591643ca529eaa21d5f6db397709ea |
|
BLAKE2b-256 | a8c5f881485cc6032ccf8f7059dea2eac4c78fc6bf36772ee8ad65116af2ad93 |
File details
Details for the file ormsgpack-1.4.0-cp310-cp310-macosx_10_12_x86_64.macosx_11_0_arm64.macosx_10_12_universal2.whl
.
File metadata
- Download URL: ormsgpack-1.4.0-cp310-cp310-macosx_10_12_x86_64.macosx_11_0_arm64.macosx_10_12_universal2.whl
- Upload date:
- Size: 413.3 kB
- Tags: CPython 3.10, macOS 10.12+ universal2 (ARM64, x86-64), macOS 10.12+ x86-64, macOS 11.0+ ARM64
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/4.0.2 CPython/3.10.13
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | cde62fb274fef0ff8f46a10456fc65850899408b30c1c3f3f78571f38884b26d |
|
MD5 | ad4ab468ed71d54eb39f0287ada147b3 |
|
BLAKE2b-256 | f4c4b36004a0eb270138c74846340d86d10b9f8bfb697c5803c5237ce9392849 |
File details
Details for the file ormsgpack-1.4.0-cp39-none-win_amd64.whl
.
File metadata
- Download URL: ormsgpack-1.4.0-cp39-none-win_amd64.whl
- Upload date:
- Size: 150.9 kB
- Tags: CPython 3.9, Windows x86-64
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/4.0.2 CPython/3.9.13
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | a3a5029a6b88ce96c6e1283860d35618ac5ee2aea82e749e0e7f7822696aef9a |
|
MD5 | 11853cf3cbf4bfe12f7feb4b72c6bee6 |
|
BLAKE2b-256 | cce06837c3c7353fe80c2404389f9ba0ec8f651afd141a94c92203ba856f4ae5 |
File details
Details for the file ormsgpack-1.4.0-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
.
File metadata
- Download URL: ormsgpack-1.4.0-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
- Upload date:
- Size: 249.7 kB
- Tags: CPython 3.9, manylinux: glibc 2.17+ x86-64
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/4.0.2 CPython/3.9.18
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | e552ee3b935e87edb056e60e7d929605281cc76f2be39e1dc6d72c696d3cba3a |
|
MD5 | 036f3290ebf967e837afdf679d94b63d |
|
BLAKE2b-256 | 3a55b3800bdd318428633a72b66a771266f21a1c04a8cc18de8a4bb336235e42 |
File details
Details for the file ormsgpack-1.4.0-cp39-cp39-macosx_10_12_x86_64.whl
.
File metadata
- Download URL: ormsgpack-1.4.0-cp39-cp39-macosx_10_12_x86_64.whl
- Upload date:
- Size: 91.3 kB
- Tags: CPython 3.9, macOS 10.12+ x86-64
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/4.0.2 CPython/3.9.18
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | f0ad264c1b8d8e9c43cb5580bea1eea3d81043648875a5e4b95345e9a43687e4 |
|
MD5 | 2701f66f077e32eb506fa9fb2819b308 |
|
BLAKE2b-256 | ce4495c3a0f9d78576079cf2c49e25e95c72999cafea103bd4c63dcc1c49cbd2 |
File details
Details for the file ormsgpack-1.4.0-cp39-cp39-macosx_10_12_x86_64.macosx_11_0_arm64.macosx_10_12_universal2.whl
.
File metadata
- Download URL: ormsgpack-1.4.0-cp39-cp39-macosx_10_12_x86_64.macosx_11_0_arm64.macosx_10_12_universal2.whl
- Upload date:
- Size: 413.3 kB
- Tags: CPython 3.9, macOS 10.12+ universal2 (ARM64, x86-64), macOS 10.12+ x86-64, macOS 11.0+ ARM64
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/4.0.2 CPython/3.9.18
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 16a290f142c35be2648e4995aa052d51010e984e38806734be9430198436a80b |
|
MD5 | 3ac1efca86be990cf10f10524864fcd8 |
|
BLAKE2b-256 | 66f3cf4d31554a3e6c24107f0acb319fca55efbf078c07fa30923509ba1cac77 |
File details
Details for the file ormsgpack-1.4.0-cp38-none-win_amd64.whl
.
File metadata
- Download URL: ormsgpack-1.4.0-cp38-none-win_amd64.whl
- Upload date:
- Size: 150.9 kB
- Tags: CPython 3.8, Windows x86-64
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/4.0.2 CPython/3.8.10
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 7783dd36dfe0bd9c6491443af61a4c28087b3dc1e4c0d12c5ac8da6ff0e9c559 |
|
MD5 | 75a562de9f42da025433ba4a82650e43 |
|
BLAKE2b-256 | 18bd33c637d77b907418aff84c9ff725a3f4cb7d85352647cda960e706110895 |
File details
Details for the file ormsgpack-1.4.0-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
.
File metadata
- Download URL: ormsgpack-1.4.0-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
- Upload date:
- Size: 249.6 kB
- Tags: CPython 3.8, manylinux: glibc 2.17+ x86-64
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/4.0.2 CPython/3.8.18
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 86acf1feed8d3984be1dbb3a238857f55d5cfc25b3f31c12469917f5f56fe1a0 |
|
MD5 | ec8630051fc5b8793aad8968963cef7b |
|
BLAKE2b-256 | 61da2bf4a4e997c5d4e75ce8b3cae84aa8faea77cbe843eb20c90e9360c0a576 |
File details
Details for the file ormsgpack-1.4.0-cp38-cp38-macosx_10_12_x86_64.whl
.
File metadata
- Download URL: ormsgpack-1.4.0-cp38-cp38-macosx_10_12_x86_64.whl
- Upload date:
- Size: 91.2 kB
- Tags: CPython 3.8, macOS 10.12+ x86-64
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/4.0.2 CPython/3.8.18
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 178899d654e1c7ef9f7ab6fbdb7230dd55bd3920cc761d525f7389be593551a0 |
|
MD5 | 67e7c4b8ba6745e54664616ae9335a59 |
|
BLAKE2b-256 | 8768dd6425de646ff1d78ddf8693fa61b83c2995a6286d9b0524998752bd99ee |
File details
Details for the file ormsgpack-1.4.0-cp38-cp38-macosx_10_12_x86_64.macosx_11_0_arm64.macosx_10_12_universal2.whl
.
File metadata
- Download URL: ormsgpack-1.4.0-cp38-cp38-macosx_10_12_x86_64.macosx_11_0_arm64.macosx_10_12_universal2.whl
- Upload date:
- Size: 413.3 kB
- Tags: CPython 3.8, macOS 10.12+ universal2 (ARM64, x86-64), macOS 10.12+ x86-64, macOS 11.0+ ARM64
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/4.0.2 CPython/3.8.18
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 750e68a0a2648cf09c7060fda63ae64fbf6a64758f47ab2869c1aaac27c06e1d |
|
MD5 | 49d5665072c26a0858129c63bb625076 |
|
BLAKE2b-256 | 25db128eaa7a09cdd60f47ab4c5b277746b068156c9d07c962ea94969ba6624a |