Skip to main content

Linear Theory of Orographic Precipitation

Project description

Build Status Coverage Status License

A Python framework that implements the Linear Theory of Orographic Precipitation following Smith & Barstad (2004).

The model includes airflow dynamics, condensed water advection, and downslope evaporation. It consists of two vertically-integrated steady-state advection equations describing: (i) the cloud water density and (ii) the hydrometeor density. Solving these equations using Fourier transform techniques, derives a single formula relating terrain and precipitation.

Please refer to the original manuscript of Smith and Barstad (2004) to understand the model physics and limitations.

Installation

Required dependencies:

  • Python 3.6 or later

  • numpy

orographic_precipitation can be installed using pip:

$ pip install orographic_precipitation

Alternatively, you can install orographic_precipitation from conda-forge:

$ conda install orographic_precipitation -c conda-forge

Usage

  1. Import relevant functions to compute orographic precipitation, set up a topography and plot the resulting precipitation matrix.

import matplotlib.pyplot as plt
from orographic_precipitation import compute_orographic_precip

2. Create example topography, for instance, an isolated circular Gaussian hill (see original publication, Fig. 4 a-c).

def gauss_topography(dx, dy):
  """Returns synthetic topography for testing.
  Analogous to Fig 4 in Smith and Barstedt, 2004.
  """
  h_max = 500.
  x0 = -25e3
  y0 = 0
  sigma_x = sigma_y = 15e3

  x, y = np.arange(-100e3, 200e3, dx), np.arange(-150e3, 150e3, dy)
  X, Y = np.meshgrid(x, y)

  h = (h_max *
       np.exp(-(((X - x0)**2 / (2 * sigma_x**2)) +
                ((Y - y0)**2 / (2 * sigma_y**2)))))

  return X, Y, h

def plot2d(X, Y, field):
  """Function that plots precipitation matrices"""
  fig, ax = plt.subplots(figsize=(6, 6))
  pc = ax.pcolormesh(X, Y, field)
  ax.set_aspect(1)
  fig.colorbar(pc)

dx = 750.
dy = 750.

X, Y, elevation = gauss_topography(dx, dy)

plot2d(X, Y, elevation)
doc/_static/gauss_topo.png
  1. Initialize dictionary with relevant parameters, compute and plot orographic precipitation.

lapse_rate = -5.8
lapse_rate_m = -6.5
ref_density = 7.4e-3

param = {
'latitude': 40,
'precip_base': 7,                          # uniform precipitation rate
'wind_speed': 10,
'wind_dir': 270,                   # wind direction (270: west)
'conv_time': 1000,                    # conversion time
'fall_time': 1000,                    # fallout time
'nm': 0.005,                      # moist stability frequency
'hw': 5000,                       # water vapor scale height
'cw': ref_density * lapse_rate_m / lapse_rate   # uplift sensitivity
}

P = compute_orographic_precip(elevation, dx, dy, **param)

plot2d(X, Y, P)
doc/_static/orograph_precip_example.png

Acknowledgement

This project is supported by the Earth Surface Process Modelling group at the German Geoscience Research Institute in Potsdam, Germany.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

orographic_precipitation-1.0.tar.gz (23.2 kB view details)

Uploaded Source

File details

Details for the file orographic_precipitation-1.0.tar.gz.

File metadata

File hashes

Hashes for orographic_precipitation-1.0.tar.gz
Algorithm Hash digest
SHA256 d7d15b6f0d3a40f4a5945931919c09e5dc77092591178a1168459e47e3714092
MD5 9c5b32425fa4ae408b48cf043822db95
BLAKE2b-256 65945015054a4f424c0eb6bbfdfaea57484eb4d17d82f7af070215c8a0a84e3e

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page