Skip to main content

Seq2seq model with attention for automatic orthographic simplification

Project description

ortografix

GitHub release PyPI release Build MIT License

Welcome to ortografix, a seq2seq model for automatic ortografic simplification, coded with pytorch 1.4.

Install

via pip:

pip3 install ortografix

or, after a git clone:

python3 setup.py install

Train

To train a model, run:

ortografix train \
--data /abs/path/to/training/data \
--model-type gru \
--shuffle \
--hidden-size 256 \
--num-layers 1 \
--bias \
--dropout 0 \
--learning-rate 0.01 \
--epochs 10 \
--print-every 100 \
--use-teacher-forcing \
--teacher-forcing-ratio 0.5 \
--output-dirpath /abs/path/to/output/directory/whereto/save/model \
--with-attention \
--character-based

Test

Qualitative evaluation

To qualitatively evaluate the output of the model on a set of 10 randomly selected sentences from a given dev/test set, run:

ortografix evaluate \
--data /abs/path/to/test/data.txt \
--model /abs/path/to/model/directory/ \
--random 10

Quantitative evaluation

To quantitatively evaluate the output of the model on a given dev/test set, run:

ortografix evaluate \
--data /abs/path/to/test/data.txt \
--model /abs/path/to/model/directory

Quantitative evaluation will return:

  1. The sum of all edit (Levenshtein) distance computed across all test pairs
  2. The average edit distance computed across all test pairs
  3. The average normalized edit distance
  4. The average normalized edit similarity

All measure are computed via textdistance.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

ortografix-0.7.0.tar.gz (14.6 kB view details)

Uploaded Source

File details

Details for the file ortografix-0.7.0.tar.gz.

File metadata

  • Download URL: ortografix-0.7.0.tar.gz
  • Upload date:
  • Size: 14.6 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.12.1 pkginfo/1.5.0.1 requests/2.21.0 setuptools/46.1.3 requests-toolbelt/0.8.0 tqdm/4.45.0 CPython/3.6.5

File hashes

Hashes for ortografix-0.7.0.tar.gz
Algorithm Hash digest
SHA256 48206504d4663b9523b7b4ee86a46f3dbaa52b175c402ab294b7764e92a65a2c
MD5 592f46ac8b50a776b934b5852c24a910
BLAKE2b-256 521ca3cbef91ba292b1bece360c389e16ca7b0c0f7b299a670b94c07787db531

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page