Get up and running vision foundational models locally.
Project description
Osam
Get up and running with segment-anything models locally.
Osam (/oʊˈsɑm/) is a tool to run open-source segment-anything models locally (inspired by Ollama).
Osam provides:
- Segment-Anything Models - original SAM, EfficientSAM;
- Local APIs - CLI & Python & HTTP interface;
- Customization - Host custom vision models.
Installation
Pip
pip install osam
Quickstart
To run with EfficientSAM:
osam run efficientsam --image <image_file>
To run with YoloWorld:
osam run yoloworld --image <image_file>
Model library
Here are models that can be downloaded:
Model | Parameters | Size | Download |
---|---|---|---|
SAM 100M | 100M | 100MB | osam run sam:100m |
SAM 300M | 300M | 300MB | osam run sam:300m |
SAM 600M | 600M | 600MB | osam run sam |
EfficientSAM 10M | 10M | 40MB | osam run efficientsam:10m |
EfficientSAM 30M | 30M | 100MB | osam run efficientsam |
YoloWorld XL | 100M | 400MB | osam run yoloworld |
PS. sam
, efficientsam
is equivalent to sam:latest
, efficientsam:latest
.
Usage
CLI
# Run a model with an image
osam run efficientsam --image examples/_images/dogs.jpg > output.png
# Get a JSON output
osam run efficientsam --image examples/_images/dogs.jpg --json
# {"model": "efficientsam", "mask": "..."}
# Give a prompt
osam run efficientsam --image examples/_images/dogs.jpg \
--prompt '{"points": [[1439, 504], [1439, 1289]], "point_labels": [1, 1]}' \
> efficientsam.png
osam run yoloworld --image examples/_images/dogs.jpg --prompt '{"text": ["dog"]}' \
> yoloworld.png
Input and output images ('dogs.jpg', 'efficientsam.png', 'yoloworld.png').
Python
import osam.apis
import osam.types
request = osam.types.GenerateRequest(
model="efficientsam",
image=np.asarray(PIL.Image.open("examples/_images/dogs.jpg")),
prompt=osam.types.Prompt(points=[[1439, 504], [1439, 1289]], point_labels=[1, 1]),
)
response = osam.apis.generate(request=request)
PIL.Image.fromarray(response.mask).save("mask.png")
Input and output images ('dogs.jpg', 'mask.png').
HTTP
# Get up the server
osam serve
# POST request
curl 127.0.0.1:11368/api/generate -X POST \
-H "Content-Type: application/json" \
-d "{\"model\": \"efficientsam\", \"image\": \"$(cat examples/_images/dogs.jpg | base64)\"}" \
| jq -r .mask | base64 --decode > mask.png
Project details
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distribution
osam-0.2.0.tar.gz
(15.4 MB
view details)
Built Distribution
osam-0.2.0-py3-none-any.whl
(8.2 kB
view details)
File details
Details for the file osam-0.2.0.tar.gz
.
File metadata
- Download URL: osam-0.2.0.tar.gz
- Upload date:
- Size: 15.4 MB
- Tags: Source
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/5.1.1 CPython/3.10.14
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 540f5677c36fda94b042e7d9c5705d965940167b58cb8b2d633ee76d045ca744 |
|
MD5 | c7589e3d808af3c4f162c047d86e8e13 |
|
BLAKE2b-256 | 5412e51da18103d31b31ed47fc22b8e88f245f94b344d634349142442e0419d9 |
File details
Details for the file osam-0.2.0-py3-none-any.whl
.
File metadata
- Download URL: osam-0.2.0-py3-none-any.whl
- Upload date:
- Size: 8.2 kB
- Tags: Python 3
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/5.1.0 CPython/3.10.14
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | d01dea6fc6cc2bd91573af1c239482023f40376ef0711b265d08b4cd6e152ca0 |
|
MD5 | 5c03687a64aaf6d2022d15c76554c79d |
|
BLAKE2b-256 | 9fa4c3ed6083f773c72e202c1d244f7e93557a98243163b7c2eb3471c3a65dce |