Skip to main content

osprey is an easy-to-use tool for hyperparameter optimization for machine learning algorithms in python using scikit-learn (or using scikit-learn compatible APIs).

Project description

osprey is an easy-to-use tool for hyperparameter optimization for machine learning algorithms in python using scikit-learn (or using scikit-learn compatible APIs).

Each osprey experiment combines an dataset, an estimator, a search space (and engine), cross validation and asynchronous serialization for distributed parallel optimization of model hyperparameters.

Example (with mixtape models/datasets)

$ cat config.yaml
estimator:
    eval: |
        Pipeline([
                ('featurizer', DihedralFeaturizer(types=['phi', 'psi'])),
                ('cluster', MiniBatchKMeans()),
                ('msm', MarkovStateModel(n_timescales=5, verbose=False)),
        ])
search:
    engine: hyperopt_tpe
    space:
        cluster__n_clusters:
            min: 10
            max: 100
            type: int
        featurizer__types:
            choices:
                - ['phi', 'psi']
                - ['phi', 'psi', 'chi1']
            type: enum
cv: 5
dataset:
    trajectories: ~/local/msmbuilder/Tutorial/XTC/*/*.xtc
    topology: ~/local/msmbuilder/Tutorial/native.pdb
    stride: 1
trials:
    uri: sqlite:///osprey-trials.db

Then run osprey worker. You can run multiple parallel instances of osprey worker simultaniously on a cluster too.

$ osprey worker config.yaml
======================================================================
= osprey is a tool for machine learning hyperparameter optimization. =
======================================================================

Loading .ospreyrc from /Users/rmcgibbo/.ospreyrc...
Loading config file from config.yaml...
Loading trials database from sqlite:///osprey-trials.db (table = "trials")...

Loading dataset...
  100 elements without labels
Instantiated estimator:
  Pipeline(steps=[('featurizer', DihedralFeaturizer(sincos=True, types=['phi', 'psi'])), ('cluster', MiniBatchKMeans(batch_size=100, compute_labels=True, init='k-means++',
        init_size=None, max_iter=100, max_no_improvement=10, n_clusters=8,
        n_init=3, random_state=None, reassignment_ratio=0.01, tol=0.0,
        verbose=0)), ('msm', MarkovStateModel(ergodic_cutoff=1, lag_time=1, n_timescales=5, prior_counts=0,
         reversible_type='mle', verbose=False))])
Hyperparameter search space:
  featurizer__types     (enum)    choices = (['phi', 'psi'], ['phi', 'psi', 'chi1'])
  cluster__n_clusters   (int)         10 <= x <= 100

----------------------------------------------------------------------
Beginning iteration                                              1 / 1
----------------------------------------------------------------------
History contains: 0 trials
Choosing next hyperparameters with hyperopt_tpe...
  {'cluster__n_clusters': 80, 'featurizer__types': ('phi', 'psi', 'chi1')}

Fitting 5 folds for each of 1 candidates, totalling 5 fits
[Parallel(n_jobs=1)]: Done   1 jobs       | elapsed:    1.0s
[Parallel(n_jobs=1)]: Done   5 out of   5 | elapsed:    3.8s finished
---------------------------------
Success! Model score = 4.370210
(best score so far   = 4.370210)
---------------------------------

1/1 models fit successfully.
osprey-worker exiting.

You can dump the database to JSON or CSV with osprey dump.

Installation

$ python setup.py install

Dependencies

  • six

  • pyyaml

  • numpy

  • scikit-learn

  • sqlalchemy

  • hyperopt (recommended, required for engine=hyperopt_tpe)

  • scipy (optional, for testing)

  • nose (optional, for testing)

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

osprey-0.1.tar.gz (27.5 kB view details)

Uploaded Source

File details

Details for the file osprey-0.1.tar.gz.

File metadata

  • Download URL: osprey-0.1.tar.gz
  • Upload date:
  • Size: 27.5 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No

File hashes

Hashes for osprey-0.1.tar.gz
Algorithm Hash digest
SHA256 bfc0f48579bf2963acf043e87c5683d4d23c764aa5c59ab6ec9828b404014f2d
MD5 ea74d266078cef8959ee19d774d0b266
BLAKE2b-256 15ef17938064e3d33be40fb6e503f005b956b25ecec35606d9c1dc3d2f07b3e0

See more details on using hashes here.

Supported by

AWS Cloud computing and Security Sponsor Datadog Monitoring Fastly CDN Google Download Analytics Pingdom Monitoring Sentry Error logging StatusPage Status page