osprey is an easy-to-use tool for hyperparameter optimization for machine learning algorithms in python using scikit-learn (or using scikit-learn compatible APIs).
Project description
osprey is an easy-to-use tool for hyperparameter optimization for machine learning algorithms in python using scikit-learn (or using scikit-learn compatible APIs).
Each osprey experiment combines an dataset, an estimator, a search space (and engine), cross validation and asynchronous serialization for distributed parallel optimization of model hyperparameters.
Example (with mixtape models/datasets)
$ cat config.yaml estimator: eval: | Pipeline([ ('featurizer', DihedralFeaturizer(types=['phi', 'psi'])), ('cluster', MiniBatchKMeans()), ('msm', MarkovStateModel(n_timescales=5, verbose=False)), ]) search: engine: hyperopt_tpe space: cluster__n_clusters: min: 10 max: 100 type: int featurizer__types: choices: - ['phi', 'psi'] - ['phi', 'psi', 'chi1'] type: enum cv: 5 dataset: trajectories: ~/local/msmbuilder/Tutorial/XTC/*/*.xtc topology: ~/local/msmbuilder/Tutorial/native.pdb stride: 1 trials: uri: sqlite:///osprey-trials.db
Then run osprey worker. You can run multiple parallel instances of osprey worker simultaniously on a cluster too.
$ osprey worker config.yaml ====================================================================== = osprey is a tool for machine learning hyperparameter optimization. = ====================================================================== Loading .ospreyrc from /Users/rmcgibbo/.ospreyrc... Loading config file from config.yaml... Loading trials database from sqlite:///osprey-trials.db (table = "trials")... Loading dataset... 100 elements without labels Instantiated estimator: Pipeline(steps=[('featurizer', DihedralFeaturizer(sincos=True, types=['phi', 'psi'])), ('cluster', MiniBatchKMeans(batch_size=100, compute_labels=True, init='k-means++', init_size=None, max_iter=100, max_no_improvement=10, n_clusters=8, n_init=3, random_state=None, reassignment_ratio=0.01, tol=0.0, verbose=0)), ('msm', MarkovStateModel(ergodic_cutoff=1, lag_time=1, n_timescales=5, prior_counts=0, reversible_type='mle', verbose=False))]) Hyperparameter search space: featurizer__types (enum) choices = (['phi', 'psi'], ['phi', 'psi', 'chi1']) cluster__n_clusters (int) 10 <= x <= 100 ---------------------------------------------------------------------- Beginning iteration 1 / 1 ---------------------------------------------------------------------- History contains: 0 trials Choosing next hyperparameters with hyperopt_tpe... {'cluster__n_clusters': 80, 'featurizer__types': ('phi', 'psi', 'chi1')} Fitting 5 folds for each of 1 candidates, totalling 5 fits [Parallel(n_jobs=1)]: Done 1 jobs | elapsed: 1.0s [Parallel(n_jobs=1)]: Done 5 out of 5 | elapsed: 3.8s finished --------------------------------- Success! Model score = 4.370210 (best score so far = 4.370210) --------------------------------- 1/1 models fit successfully. osprey-worker exiting.
You can dump the database to JSON or CSV with osprey dump.
Installation
$ python setup.py install
Dependencies
six
pyyaml
numpy
scikit-learn
sqlalchemy
hyperopt (recommended, required for engine=hyperopt_tpe)
scipy (optional, for testing)
nose (optional, for testing)
Project details
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distribution
File details
Details for the file osprey-0.1.tar.gz
.
File metadata
- Download URL: osprey-0.1.tar.gz
- Upload date:
- Size: 27.5 kB
- Tags: Source
- Uploaded using Trusted Publishing? No
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | bfc0f48579bf2963acf043e87c5683d4d23c764aa5c59ab6ec9828b404014f2d |
|
MD5 | ea74d266078cef8959ee19d774d0b266 |
|
BLAKE2b-256 | 15ef17938064e3d33be40fb6e503f005b956b25ecec35606d9c1dc3d2f07b3e0 |