Skip to main content

OSQP: The Operator Splitting QP Solver

Project description

https://github.com/oxfordcontrol/qdldl-python/workflows/Build/badge.svg?branch=master

Python wrapper for OSQP: the Operator Splitting QP Solver.

The OSQP (Operator Splitting Quadratic Program) solver is a numerical optimization package for solving problems in the form

minimize        0.5 x' P x + q' x

subject to      l <= A x <= u

where x in R^n is the optimization variable. The objective function is defined by a positive semidefinite matrix P in S^n_+ and vector q in R^n. The linear constraints are defined by matrix A in R^{m x n} and vectors l in R^m U {-inf}^m, u in R^m U {+inf}^m.

Installation

To install osqp for python, make sure that you’re using a recent version of pip (pip install --upgrade pip) and then use pip install osqp.

To install osqp from source, clone the repository (git clone --recurse-submodules https://github.com/osqp/osqp-python) and run pip install . from inside the cloned folder.

Documentation

The interface is documented here.

Packaging

This repository performs the tests and builds the pypi wheels. Conda packages are on conda-forge.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

osqp-1.0.0b1.tar.gz (57.0 kB view details)

Uploaded Source

Built Distributions

osqp-1.0.0b1-cp310-cp310-win_amd64.whl (292.5 kB view details)

Uploaded CPython 3.10 Windows x86-64

osqp-1.0.0b1-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (335.5 kB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ x86-64

osqp-1.0.0b1-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (315.6 kB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ ARM64

osqp-1.0.0b1-cp39-cp39-win_amd64.whl (292.4 kB view details)

Uploaded CPython 3.9 Windows x86-64

osqp-1.0.0b1-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (335.9 kB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ x86-64

osqp-1.0.0b1-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (315.8 kB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ ARM64

osqp-1.0.0b1-cp38-cp38-win_amd64.whl (292.3 kB view details)

Uploaded CPython 3.8 Windows x86-64

osqp-1.0.0b1-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (335.5 kB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ x86-64

osqp-1.0.0b1-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (315.5 kB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ ARM64

File details

Details for the file osqp-1.0.0b1.tar.gz.

File metadata

  • Download URL: osqp-1.0.0b1.tar.gz
  • Upload date:
  • Size: 57.0 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.9.16

File hashes

Hashes for osqp-1.0.0b1.tar.gz
Algorithm Hash digest
SHA256 22841c4fb960c5228c57e7436214a005f3b53be2810ae0affc23db8e7e4518f9
MD5 7d79d638cb4f244a5f7ff6d6230b644c
BLAKE2b-256 9ee3c9eecf0318d819142649f074f1fcc4b266f7a72f975da9551985833d6e4a

See more details on using hashes here.

File details

Details for the file osqp-1.0.0b1-cp310-cp310-win_amd64.whl.

File metadata

  • Download URL: osqp-1.0.0b1-cp310-cp310-win_amd64.whl
  • Upload date:
  • Size: 292.5 kB
  • Tags: CPython 3.10, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.9.16

File hashes

Hashes for osqp-1.0.0b1-cp310-cp310-win_amd64.whl
Algorithm Hash digest
SHA256 4f3a271e7f7b1c38f463884a511387c961cdaa37b4be3f5622101fca8d8ab380
MD5 7da6798777b10eec264aaf411997c05d
BLAKE2b-256 e2524256cd4f233596c171846ac8782129d0ddfca4751ff577c0331a9e819640

See more details on using hashes here.

File details

Details for the file osqp-1.0.0b1-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for osqp-1.0.0b1-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 2524f73ebe886938aaa08821beb41fba13a66db704eb4b33c7d8705f95eff01c
MD5 42de0e7edfaabd17d1497af33a68959e
BLAKE2b-256 9d32d8d5a20e08e9cf29a5fb9254c57ba98a0cc0b86454acfc0d4e0d975d2903

See more details on using hashes here.

File details

Details for the file osqp-1.0.0b1-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for osqp-1.0.0b1-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 8a3e064a4faa3697c9524791ecb15cc23c5c11db2f69097464024094374e0e7a
MD5 74aa38bef1183dfead94ad2c17c8a4b7
BLAKE2b-256 47cf46da3fcbbdb344dd3d1d3259b2cf22ff6df877cff14311f77bc30a7d75e7

See more details on using hashes here.

File details

Details for the file osqp-1.0.0b1-cp39-cp39-win_amd64.whl.

File metadata

  • Download URL: osqp-1.0.0b1-cp39-cp39-win_amd64.whl
  • Upload date:
  • Size: 292.4 kB
  • Tags: CPython 3.9, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.9.16

File hashes

Hashes for osqp-1.0.0b1-cp39-cp39-win_amd64.whl
Algorithm Hash digest
SHA256 e6494df02427a316a34fd2fc48dbd3f9fa193ee0f8c8f1597b10ebb238ce0805
MD5 eed215a818e87e0fe8d65c0ade2baab4
BLAKE2b-256 48b3bf1818b85cbc0bef8c146dfc4aedfcec82e914526ae7f3eca4f5c8fbad1a

See more details on using hashes here.

File details

Details for the file osqp-1.0.0b1-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for osqp-1.0.0b1-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 c1f1860736e42f477a96c5a52c635b3b237066d17b4d748868f14ce0fe942095
MD5 bc6d861465e570f333adb39d626f32e5
BLAKE2b-256 9ea1ca48caf9ddaaec150e51b926f1faace14ffd81ff68ef7537af98280bb85a

See more details on using hashes here.

File details

Details for the file osqp-1.0.0b1-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for osqp-1.0.0b1-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 5a1cf69bf886e4b7f16c4cb7811e73dcfa5586bdf2885698b8d1dfb9b5ad11bf
MD5 cd2a492932d6581a33c42166ddaf8cdc
BLAKE2b-256 7f1ddfc0c313d56d516edf9b6b74c59f7ed4980e6e6a285c2ef9c58876c5f96b

See more details on using hashes here.

File details

Details for the file osqp-1.0.0b1-cp38-cp38-win_amd64.whl.

File metadata

  • Download URL: osqp-1.0.0b1-cp38-cp38-win_amd64.whl
  • Upload date:
  • Size: 292.3 kB
  • Tags: CPython 3.8, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.9.16

File hashes

Hashes for osqp-1.0.0b1-cp38-cp38-win_amd64.whl
Algorithm Hash digest
SHA256 5a1c5c30ac61f13c0d372bcb18cc80e9d6fa9b5aa72bd16b55db9e23703ae1a8
MD5 31f64075b5edfb66fc581f8d55cbd83d
BLAKE2b-256 75b8ecc4589d8990fd92512e20cc972ca4da4c1e6608cd9692476ad811f4e4f5

See more details on using hashes here.

File details

Details for the file osqp-1.0.0b1-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for osqp-1.0.0b1-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 8d5fab6beaac487d27e9925a28e54d13c2ad4c3070a3f7b554aa4414aa0e56ce
MD5 e7f20b678b703cb04cb44abdd79ae407
BLAKE2b-256 ccfbe296e62c616354798003d834fec138e3736186c312fd64e8efaf9c0cb19b

See more details on using hashes here.

File details

Details for the file osqp-1.0.0b1-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for osqp-1.0.0b1-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 54e039ed5b0c2a6382586e55f98473b00d34f96cc7ef6a49f5354e03ff177344
MD5 013dc9cc8c48515449010b987e9a8e7c
BLAKE2b-256 a8e0dcd276f9049579259269398592c2680b78d42537236f469813def73de218

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page