Ouroboros
Project description
uroboros
A train-less, much faster decoding algorithm
Ouroboros is a new decoding algorithm that has much faster generation speed compared with Speculative Decoding and Lookahead Decoding, without any training cost.
Here is an example of generation with prompt
Write a Java program to implement a heap
class Heap {
Blue words are generated by small model, black words are corrected by large model and red words are accepted candidate suffixes.
Benchmark Result
The generation speed tested on HumanEval and MBPP are presented here. The shadowed parts are the extra improvement caused by warm start.
Here are more experimental results on GSM8K, CNNDM and WMT16. Ouroboros with "†" represents Ouroboros with warm start, and Ouroboros without "†" represents Ouroboros without warm start.
Task | Algorithm | Yi 34b/6b tok/s | Yi 34b/6b speed-up | Llama-2 70b/7b tok/s | Llama-2 70b/7b speed-up |
---|---|---|---|---|---|
GSM8k | Greedy | 15.33 | 1.00 | 8.96 | 1.00 |
GSM8k | Speculative | 16.99 | 1.11 | 16.86 | 1.88 |
GSM8k | Lookahead | 25.14 | 1.64 | 13.77 | 1.54 |
GSM8k | Ouroboros | 26.41 | 1.72 | 22.18 | 2.48 |
GSM8k | Ouroboros† | 28.23 | 1.84 | 24.03 | 2.68 |
CNN/DM | Greedy | 14.62 | 1.00 | 8.12 | 1.00 |
CNN/DM | Speculative | 17.82 | 1.22 | 12.77 | 1.57 |
CNN/DM | Lookahead | 18.77 | 1.28 | 9.47 | 1.17 |
CNN/DM | Ouroboros | 21.24 | 1.45 | 14.62 | 1.80 |
CNN/DM | Ouroboros† | 22.65 | 1.55 | 14.67 | 1.81 |
WMT16 | Greedy | 14.78 | 1.00 | 9.52 | 1.00 |
WMT16 | Speculative | 17.48 | 1.18 | 14.72 | 1.55 |
WMT16 | Lookahead | 17.98 | 1.22 | 14.65 | 1.54 |
WMT16 | Ouroboros | 19.75 | 1.34 | 19.11 | 2.01 |
WMT16 | Ouroboros† | 19.94 | 1.35 | 19.27 | 2.02 |
Install
Install from pip
pip install ouroboros
Install from source code
- First, clone this repo as
ouroboros
- Then, run the following command
cd ouroboros
pip install -e .
Quick Start
An Example
-
Here is an example of using Ouroboros. Note: current version of
ouroboros
can only support Llama model inference. Please importLlamaForCausalLM
fromouroboros.models
instead oftransformers
-
The following code shows an example of comparing the output of Ouroboros with Greedy decoding. If
ouroboros
is installed correctly, the following code should outputTrue
.
import torch
from ouroboros import ouroboros
from transformers import AutoTokenizer
from ouroboros.models import LlamaForCausalLM
window_size = 20
guess_set_size = 20
lookahead_level = 7
gamma = 12
small_model = LlamaForCausalLM.from_pretrained("yourpath", torch_dtype=torch.float16, device_map='cuda')
target_model = LlamaForCausalLM.from_pretrained("yourpath", torch_dtype=torch.float16, device_map='cuda')
tokenizer = AutoTokenizer.from_pretrained("yourpath")
prompt = "Please summarize the following paragraph. Officers searched properties in the Waterfront Park and Colonsay View areas of the city on Wednesday. Detectives said three firearms, ammunition and a five-figure sum of money were recovered. A 26-year-old man who was arrested and charged appeared at Edinburgh Sheriff Court on Thursday. Summary: "
input_ids = tokenizer(prompt, return_tensors='pt').to('cuda')['input_ids']
ouroboros_output = ouroboros(input_ids, small_model, target_model, max_len=64, gamma=gamma, window_size=window_size, guess_set_size=guess_set_size, lookahead_level=lookahead_level)
std_output = target_model.generate(input_ids, do_sample=False, min_length=64, max_length=64)
print(ouroboros_output[:,:64].equal(std_output[:,:64]))
Using Ouroboros
- First, prepare two Hugging Face transformers models (the target model and draft model). Load the model with
LlamaForCausalLM
fromouroboros.models
. - Then import the generation function
ouroboros
fromouroboros
. - Call the function by the following parameters:
@torch.no_grad()
def ouroboros(prefix : torch.Tensor, approx_model : torch.nn.Module, target_model : torch.nn.Module, ngram_cache : CacheEngine = None,
max_len : int = 512 , gamma : int = 4, window_size = 20, guess_set_size = 20, lookahead_level = 7, eos_token_id = 2, topk=3) -> torch.Tensor:
"""
Performs ouroboros with an approximate model and a target model to generate a sequence of tokens.
Args:
prefix (torch.Tensor): The initial sequence of tokens to start the generation from.
approx_model (torch.nn.Module): The approximate model used for initial token generation. The model should support Hugging Face transformers model methods.
target_model (torch.nn.Module): The target model used for refining the generated tokens. The model should support Hugging Face transformers model methods.
ngram_cache (CacheEngine, optional): A cache engine for storing and retrieving n-gram predictions. Defaults to None, in which case a new cache engine is created.
max_len (int, optional): The maximum length of the generated sequence. Defaults to 512.
gamma (int, optional): The lookahead parameter for generation. Defaults to 4.
window_size (int, optional): The window size used for n-gram generation. Defaults to 20. Currently, must be equal to guess_set_size.
guess_set_size (int, optional): The size of the guess set for n-gram retrieving. Defaults to 20. Currently, must be equal to window_size.
lookahead_level (int, optional): The level of lookahead decoding. Defaults to 7.
eos_token_id (int, optional): The token id representing the end-of-sequence token. Defaults to 2. Should be given by tokenizer.eos_token_id.
topk (int, optional): The k of verifying k candidate suffixes.
Returns:
torch.Tensor: The generated sequence of tokens, including the initial prefix and any additional tokens generated by the function.
"""
Citation
Please cite our paper if you find our work valuable.
@article{ouroboros,
title={Ouroboros: Speculative Decoding with Large Model Enhanced Drafting},
author={Weilin Zhao, Yuxiang Huang, Xu Han, Chaojun Xiao, Zhiyuan Liu, Maosong Sun},
journal={arXiv preprint arXiv:2402.13720},
url={https://arxiv.org/abs/2402.13720}
year={2024}
}
Project details
Release history Release notifications | RSS feed
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distribution
Built Distribution
File details
Details for the file ourodec-0.1.0.tar.gz
.
File metadata
- Download URL: ourodec-0.1.0.tar.gz
- Upload date:
- Size: 35.7 kB
- Tags: Source
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/4.0.2 CPython/3.10.8
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 59b4359f3b4931b258b4afe4418b1a05f4074c69f50fa820250fbf1d5ab0d590 |
|
MD5 | c509e51f293a3fd6d409efec7eae5264 |
|
BLAKE2b-256 | dba8051d2d2182de190a6a860c977398ac17743c221fbc66369ca23aeace7b60 |
File details
Details for the file ourodec-0.1.0-py3-none-any.whl
.
File metadata
- Download URL: ourodec-0.1.0-py3-none-any.whl
- Upload date:
- Size: 35.8 kB
- Tags: Python 3
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/4.0.2 CPython/3.10.8
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 0ef44e2be3655b46c23ba3e25cfd0ef3eb3cfb9f1ca2b42f215106be4d12c7db |
|
MD5 | afb0646c3a0ad921e9b7c38127ff0e9b |
|
BLAKE2b-256 | 619f2e00e6cd4e06a0a3f76981b9ce92923afcb9823578bd2713f1cec4135651 |