Skip to main content

"I like to get into boxes."

Project description

Out of the Box

"I like to get into boxes."

A comprehensive toolkit for handling bounding boxes in various formats, including a GUI for ROI selection. For those who like to think out of the box.

Out of the box

Features

  • Bounding box utilities:

    • Support for VOC, COCO, and YOLO formats
    • Conversion between formats
    • Area calculation
    • Intersection over Union (IoU) calculation
    • Drawing bounding boxes on images
  • Roy app:

    • Load any image file supported by PIL
    • Draw and adjust bounding box interactively
    • Display coordinates in both pixel and normalized formats
    • Real-time updates of bounding box parameters

Installation

pip install out-of-the-box

Usage

Bounding box utilities

img_shape = (500, 500)
img = np.zeros((*img_shape, 3), dtype=np.uint8)

# Create bounding boxes in different formats
voc_box = VOCBox(100, 100, 300, 300)
coco_box = COCOBox(100, 100, 200, 200)
yolo_box = YOLOBox(0.4, 0.4, 0.2, 0.2)

bb_voc = BoundingBox(voc_box, img_shape)
bb_coco = BoundingBox(coco_box, img_shape)
bb_yolo = BoundingBox(yolo_box, img_shape)

# Print bounding boxes
print("VOC bounding box:", bb_voc)
print("COCO bounding box:", bb_coco)
print("YOLO bounding box:", bb_yolo)

# Convert between formats
print("\nFormat conversions:")
print("VOC to COCO:", bb_voc.to_coco())
print("COCO to YOLO:", bb_coco.to_yolo())
print("YOLO to VOC:", bb_yolo.to_voc())

# Normalized and pixel coordinates
print("\nNormalized and pixel coordinates:")
print("VOC (normalized):", bb_voc.to_voc(normalized=True))
print("COCO (pixel):", bb_yolo.to_coco(normalized=False))

# Area calculation
print("\nAreas:")
print("VOC box area:", bb_voc.area)
print("COCO box area:", bb_coco.area)
print("YOLO box area:", bb_yolo.area)

# Intersection and Union
intersection = BoundingBox.intersection(bb_voc, bb_coco)
union = BoundingBox.union(bb_voc, bb_coco)
print("\nIntersection and Union:")
print(f"Intersection between VOC and COCO: {intersection:.2f}")
print(f"Union between VOC and COCO: {union:.2f}")

# IoU calculation
iou = BoundingBox.iou(bb_voc, bb_coco)
print(f"IoU between VOC and COCO boxes: {iou:.2f}")

# Percentage inside
percentage = bb_coco.percentage_inside(bb_voc)
print(f"\nPercentage of COCO box inside VOC box: {percentage:.2%}")

# Center point
print("\nCenter points:")
print("VOC box center:", bb_voc.center)
print("COCO box center:", bb_coco.center)
print("YOLO box center:", bb_yolo.center)

# Contains point
test_point = (200, 200)
print(f"\nPoint {test_point} contained in:")
print("VOC box:", bb_voc.contains_point(test_point))
print("COCO box:", bb_coco.contains_point(test_point))
print("YOLO box:", bb_yolo.contains_point(test_point))

# Overlap percentage
overlap = bb_coco.overlap_percentage(bb_voc)
print(f"\nOverlap percentage of COCO box with VOC box: {overlap:.2%}")

# Draw the bounding boxes on the image
img = bb_voc.draw_on_image(img, color=COLOR_RED, thickness=2, label="VOC")
img = bb_coco.draw_on_image(img, color=COLOR_GREEN, thickness=2, label="COCO")
img = bb_yolo.draw_on_image(img, color=COLOR_BLUE, thickness=2, label="YOLO")

# Display the image
cv2.imshow("Image with bounding boxes", img)
cv2.waitKey(0)
cv2.destroyAllWindows()

Roy App

Example of selecting ROI in the app

To start the ROI selector GUI:

roy

In the GUI:

  1. Click "Open Image" to load an image.
  2. Draw a bounding box by clicking and dragging on the image.
  3. Adjust the box using the entry fields or by dragging.
  4. View both pixel and normalized coordinates.

License

This project is licensed under the MIT License. See the LICENSE file for details.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

out_of_the_box-1.3.0.tar.gz (10.7 kB view details)

Uploaded Source

Built Distribution

out_of_the_box-1.3.0-py3-none-any.whl (12.3 kB view details)

Uploaded Python 3

File details

Details for the file out_of_the_box-1.3.0.tar.gz.

File metadata

  • Download URL: out_of_the_box-1.3.0.tar.gz
  • Upload date:
  • Size: 10.7 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.1.1 CPython/3.11.9

File hashes

Hashes for out_of_the_box-1.3.0.tar.gz
Algorithm Hash digest
SHA256 7512d3e3b731b3710073a81600a398ff84d82587af9cb36517efaf7d8baa86fc
MD5 d3829e6eafd71be69a39e3c90840d9cb
BLAKE2b-256 0af491cd2ad55b780905b845c47b5e81ee6b179dd1885a5f71f0720acf8cfdec

See more details on using hashes here.

File details

Details for the file out_of_the_box-1.3.0-py3-none-any.whl.

File metadata

File hashes

Hashes for out_of_the_box-1.3.0-py3-none-any.whl
Algorithm Hash digest
SHA256 428ab5e8bba0394dadc43afca61b8cd9a59e7dc61ed597329de322e019f20e38
MD5 48f91ea1c4c1c4c8d50705c2b91d095e
BLAKE2b-256 ae9ab2715f7838be898decd8c6c45838fe5a1eeb593d261b97719a7464c5ed55

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page