Skip to main content

Core data types used by OWID for managing data.

Project description

owid-catalog

A Pythonic API for working with OWID's data catalog.

Status: experimental, APIs likely to change

Quickstart

Install with pip install owid-catalog. Then you can begin exploring the experimental data catalog:

from owid import catalog

# look for Covid-19 data, return a data frame of matches
catalog.find('covid')

# load Covid-19 data from the Our World In Data namespace as a data frame
df = catalog.find('covid', namespace='owid').load()

Development

You need Python 3.9+, poetry and make installed. Clone the repo, then you can simply run:

# run all unit tests and CI checks
make test

# watch for changes, then run all checks
make watch

Data types

Catalog

A catalog is an arbitrarily deep folder structure containing datasets inside. It can be local on disk, or remote.

Load the remote catalog

# find the default OWID catalog and fetch the catalog index over HTTPS
cat = RemoteCatalog()

# get a list of matching tables in different datasets
matches = cat.find('population')

# fetch a data frame for a specific match over HTTPS
t = cat.find_one('population', namespace='gapminder')

Datasets

A dataset is a folder of tables containing metadata about the overall collection.

  • Metadata about the dataset lives in index.json
  • All tables in the folder must share a common format (CSV or Feather)

Create a new dataset

# make a folder and an empty index.json file
ds = Dataset.create('/tmp/my_data')
# choose CSV instead of feather for files
ds = Dataset.create('/tmp/my_data', format='csv')

Add a table to a dataset

# serialize a table using the table's name and the dataset's default format (feather)
# (e.g. /tmp/my_data/my_table.feather)
ds.add(table)

Remove a table from a dataset

ds.remove('table_name')

Access a table

# load a table including metadata into memory
t = ds['my_table']

List tables

# the length is the number of datasets discovered on disk
assert len(ds) > 0
# iterate over the tables discovered on disk
for table in ds:
    do_something(table)

Add metadata

# you need to manually save your changes
ds.title = "Very Important Dataset"
ds.description = "This dataset is a composite of blah blah blah..."
ds.save()

Copy a dataset

# copying a dataset copies all its files to a new location
ds_new = ds.copy('/tmp/new_data_path')

# copying a dataset is identical to copying its folder, so this works too
shutil.copytree('/tmp/old_data', '/tmp/new_data_path')
ds_new = Dataset('/tmp/new_data_path')

Tables

Tables are essentially pandas DataFrames but with metadata. All operations on them occur in-memory, except for loading from and saving to disk. On disk, they are represented by tabular file (feather or CSV) and a JSON metadata file.

Make a new table

# same API as DataFrames
t = Table({
    'gdp': [1, 2, 3],
    'country': ['AU', 'SE', 'CH']
}).set_index('country')

Add metadata about the whole table

t.title = 'Very important data'

Add metadata about a field

t.gdp.description = 'GDP measured in 2011 international $'
t.sources = [
    Source(title='World Bank', url='https://www.worldbank.org/en/home')
]

Add metadata about all fields at once

# sources and licenses are actually stored a the field level
t.sources = [
    Source(title='World Bank', url='https://www.worldbank.org/en/home')
]
t.licenses = [
    License('CC-BY-SA-4.0', url='https://creativecommons.org/licenses/by-nc/4.0/')
]

Save a table to disk

# save to /tmp/my_table.feather + /tmp/my_table.meta.json
t.to_feather('/tmp/my_table.feather')

# save to /tmp/my_table.csv + /tmp/my_table.meta.json
t.to_csv('/tmp/my_table.csv')

Load a table from disk

These work like normal pandas DataFrames, but if there is also a my_table.meta.json file, then metadata will also get read. Otherwise it will be assumed that the data has no metadata:

t = Table.read_feather('/tmp/my_table.feather')

t = Table.read_csv('/tmp/my_table.csv')

Changelog

  • v0.2.2
    • Repack frames to compact dtypes on Table.to_feather()
  • v0.2.1
    • Fix key typo used in version check
  • v0.2.0
    • Copy dataset metadata into tables, to make tables more traceable
    • Add API versioning, and a requirement to update if your version of this library is too old
  • v0.1.1
    • Add support for Python 3.8
  • v0.1.0
    • Initial release, including searching and fetching data from a remote catalog

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

owid-catalog-0.2.2.tar.gz (15.1 kB view details)

Uploaded Source

Built Distribution

owid_catalog-0.2.2-py3-none-any.whl (16.1 kB view details)

Uploaded Python 3

File details

Details for the file owid-catalog-0.2.2.tar.gz.

File metadata

  • Download URL: owid-catalog-0.2.2.tar.gz
  • Upload date:
  • Size: 15.1 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: poetry/1.1.10 CPython/3.9.7 Darwin/20.6.0

File hashes

Hashes for owid-catalog-0.2.2.tar.gz
Algorithm Hash digest
SHA256 4da6a17ca2261a1a4f1ada69bac2981bba479740000b1880bc8e603e892c1076
MD5 df7e534dcb7da155aef169a4ac43acc3
BLAKE2b-256 37389956ae599a0aee0889885f0e87e3deb14cdc2bb63d3fa53c7c7a5d2ba075

See more details on using hashes here.

File details

Details for the file owid_catalog-0.2.2-py3-none-any.whl.

File metadata

  • Download URL: owid_catalog-0.2.2-py3-none-any.whl
  • Upload date:
  • Size: 16.1 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: poetry/1.1.10 CPython/3.9.7 Darwin/20.6.0

File hashes

Hashes for owid_catalog-0.2.2-py3-none-any.whl
Algorithm Hash digest
SHA256 6edd4c87ea25046e95f5ec460050cb0afec34733a3bece6e814e402368abc1d9
MD5 88b3b0d93be92ba69679aa181a8005ec
BLAKE2b-256 f441c29b74cc6dc3cc1920c7887f03c95fb8c10f3c637b81a4b74f0ff610eed2

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page