Skip to main content

Data Quality framework for Pyspark jobs

Project description

Owl Data Sanitizer: A light Spark data validation framework

license Build Status

This is a small framework for data quality validation. This first version works reading spark dataframes from local datasources like local system, s3 or hive and delivers hive tables with quality reports.

Let's follow this example:

Input data from a hive table:

+----------+--------------+--------+---------+------------------+---------+
|GENERAL_ID|          NAME|    CODE|ADDR_DESC|ULTIMATE_PARENT_ID|PARENT_ID|
+----------+--------------+--------+---------+------------------+---------+
|         1|Dummy 1 Entity|12000123|     null|              null|     null|
|         2|          null|    null|     null|                 2|        2|
|         3|          null|12000123|     null|                 3|        3|
|         4|             1|       1|     null|                 4|        4|
|         5|             1|12000123|     null|                 5|        5|
|         6|          null|       3|     null|                 6|        6|
|      null|          null|12000123|     null|                11|        7|
|         7|             2|    null|     null|                 8|        8|
+----------+--------------+--------+---------+------------------+---------+

following this validation config with 4 sections:

  1. source_table including the table metadata.
  2. correctness_validations including correctness validations per column. the rule must be a valid spark SQL expression.
  3. parent_children_constraints including children parent constrains. This means that any parent id should be valid id.
  4. compare_related_tables_list including comparison with other tables or the same table in other environments.
{
  "source_table": {
    "name": "test.data_test",
    "id_column": "GENERAL_ID",
    "unique_per_cols": [GENERAL_ID, ULTIMATE_PARENT_ID],
    "fuzzy_desuplication_distance": 1,
    "output_correctness_table": "test.data_test_correctness",
    "output_completeness_table": "test.data_test_completeness",
    "output_comparison_table": "test.data_test_comparison"
  },
  "correctness_validations": [
    {
      "column": "CODE",
      "rule": "CODE is not null and CODE != '' and CODE != 'null'"
    },
    {
      "column": "NAME",
      "rule": "NAME is not null and NAME != '' and NAME != 'null'"
    },
    {
      "column": "GENERAL_ID",
      "rule": "GENERAL_ID is not null and GENERAL_ID != '' and GENERAL_ID != 'null' and CHAR_LENGTH(GENERAL_ID) < 4"
    }
  ],
  "completeness_validations": [
    {
      "column": "OVER_ALL_COUNT",
      "rule": "OVER_ALL_COUNT <= 7"
    }
  ],
  "parent_children_constraints": [
    {
      "column": "GENERAL_ID",
      "parent": "ULTIMATE_PARENT_ID"
    },
    {
      "column": "GENERAL_ID",
      "parent": "PARENT_ID"
    }
  ],
  "compare_related_tables_list": ["test.diff_df", "test.diff_df_2"]
}

Therefore, these results are delivered in two output hive tables:

a). Correctness Report.

  • You will see and output col per validation col showing either 1 when there is error or 0 when is clean.
  • Sum of error per columns.
+----------+-------------+-------------+-------------------+--------------------------------------+-----------------------------+-------------+--------------------------+-----------------+-----------------+-----------------------+------------------------------------------+---------------------------------+-----------------+
|GENERAL_ID|IS_ERROR_CODE|IS_ERROR_NAME|IS_ERROR_GENERAL_ID|IS_ERROR_GENERAL_ID_ULTIMATE_PARENT_ID|IS_ERROR_GENERAL_ID_PARENT_ID|IS_ERROR__ROW|dt                        |IS_ERROR_CODE_SUM|IS_ERROR_NAME_SUM|IS_ERROR_GENERAL_ID_SUM|IS_ERROR_GENERAL_ID_ULTIMATE_PARENT_ID_SUM|IS_ERROR_GENERAL_ID_PARENT_ID_SUM|IS_ERROR__ROW_SUM|
+----------+-------------+-------------+-------------------+--------------------------------------+-----------------------------+-------------+--------------------------+-----------------+-----------------+-----------------------+------------------------------------------+---------------------------------+-----------------+
|null      |0            |1            |1                  |1                                     |0                            |1            |2020-04-17 09:39:04.783505|2                |4                |1                      |2                                         |1                                |5                |
|3         |0            |1            |0                  |0                                     |0                            |1            |2020-04-17 09:39:04.783505|2                |4                |1                      |2                                         |1                                |5                |
|7         |1            |0            |0                  |1                                     |1                            |1            |2020-04-17 09:39:04.783505|2                |4                |1                      |2                                         |1                                |5                |
|5         |0            |0            |0                  |0                                     |0                            |0            |2020-04-17 09:39:04.783505|2                |4                |1                      |2                                         |1                                |5                |
|6         |0            |1            |0                  |0                                     |0                            |1            |2020-04-17 09:39:04.783505|2                |4                |1                      |2                                         |1                                |5                |
|4         |0            |0            |0                  |0                                     |0                            |0            |2020-04-17 09:39:04.783505|2                |4                |1                      |2                                         |1                                |5                |
|2         |1            |1            |0                  |0                                     |0                            |1            |2020-04-17 09:39:04.783505|2                |4                |1                      |2                                         |1                                |5                |
|1         |0            |0            |0                  |0                                     |0                            |0            |2020-04-17 09:39:04.783505|2                |4                |1                      |2                                         |1                                |5                |
+----------+-------------+-------------+-------------------+--------------------------------------+-----------------------------+-------------+--------------------------+-----------------+-----------------+-----------------------+------------------------------------------+---------------------------------+-----------------+

b) Completeness Report.

  • The overall count of the dataframe.
  • Column checking if the overall count is complete, example: IS_ERROR_OVER_ALL_COUNT.
+--------------+-----------------------+--------------------------+
|OVER_ALL_COUNT|IS_ERROR_OVER_ALL_COUNT|dt                        |
+--------------+-----------------------+--------------------------+
|8             |1                      |2020-04-17 09:39:04.783505|
+--------------+-----------------------+--------------------------+

c). Comparison of schema and values with related dataframes.

NOTE: the result includes for now only the ids that are different and a further join with the source data to see differences is needed.

+--------------+----------------------------------+-----------------+------------------+-----------------+--------------------------+
|df            |missing_cols_right                |missing_cols_left|missing_vals_right|missing_vals_left|dt                        |
+--------------+----------------------------------+-----------------+------------------+-----------------+--------------------------+
|test.diff_df_2|GENERAL_ID:string,ADDR_DESC:string|GENERAL_ID:int   |                  |                 |2020-04-17 09:39:07.572483|
|test.diff_df  |                                  |                 |6,7               |                 |2020-04-17 09:39:07.572483|
+--------------+----------------------------------+-----------------+------------------+-----------------+--------------------------+

Installation

Install owl sanitizer from PyPI:

pip install owl-sanitizer-data-quality

Then you can call the library.

from spark_validation.dataframe_validation.dataframe_validator import CreateHiveValidationDF
from spark_validation.common.config import Config

spark_session = SparkSession.builder.enableHiveSupport().getOrCreate()
with open(PATH_TO_CONFIG_FILE) as f:
        config = Config.parse(f)
CreateHiveValidationDF.validate(spark_session, config)

To use in your spark submit command or airflow dag.

  • Add py_files : [https://pypi.org/project/owl-sanitizer-data-quality/latest/] .
  • application : owl-sanitizer-data-quality/latest/src/spark_validation/dataframe_validation/hive_validator.py
  • application_package: https://pypi.org/project/owl-sanitizer-data-quality/latest/owl-sanitizer-data-quality-latest.tar.gz
  • application_params: URL_TO_YOUR_REMOTE_CONFIG_FILE

Contact

Please ask questions about technical issues here on GitHub.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

owl-sanitizer-data-quality-0.4.tar.gz (8.9 kB view details)

Uploaded Source

Built Distribution

owl_sanitizer_data_quality-0.4-py3-none-any.whl (12.5 kB view details)

Uploaded Python 3

File details

Details for the file owl-sanitizer-data-quality-0.4.tar.gz.

File metadata

  • Download URL: owl-sanitizer-data-quality-0.4.tar.gz
  • Upload date:
  • Size: 8.9 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.1.1 pkginfo/1.5.0.1 requests/2.22.0 setuptools/41.4.0 requests-toolbelt/0.9.1 tqdm/4.36.1 CPython/3.7.4

File hashes

Hashes for owl-sanitizer-data-quality-0.4.tar.gz
Algorithm Hash digest
SHA256 e0b04e83887c57ee83973d58f4ffc7bc531480870df28e05414bbdf7ee86fcc3
MD5 8b212a1f66f60329e1159948e8b2c15c
BLAKE2b-256 dd2c6aa5dfaed04de289de8e89ed8cd800bfe1849152a073822214d2eebfbf08

See more details on using hashes here.

File details

Details for the file owl_sanitizer_data_quality-0.4-py3-none-any.whl.

File metadata

  • Download URL: owl_sanitizer_data_quality-0.4-py3-none-any.whl
  • Upload date:
  • Size: 12.5 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.1.1 pkginfo/1.5.0.1 requests/2.22.0 setuptools/41.4.0 requests-toolbelt/0.9.1 tqdm/4.36.1 CPython/3.7.4

File hashes

Hashes for owl_sanitizer_data_quality-0.4-py3-none-any.whl
Algorithm Hash digest
SHA256 13da1345f5da0ed3b93fbc701e75686f7189a26dbcf537f1d167b56ed7e66659
MD5 5e6d6c328fedd92f57ca0bce179afb32
BLAKE2b-256 80b3198dc146315a157ce490e846074a29cb6a26115291ced2594d2b1fc4a963

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page