Privacy metadata in process mining
Project description
Introduction
This project implements the privacy metadata proposed in the paper Privacy-Preserving Data Publishing in Process Mining.
Python package
The implementation has been published as a standard Python package. Use the following command to install the corresponding Python package:
pip install p-privacy-metadata
Usage
from p_privacy_metadata.privacyExtension import privacyExtension
from p_privacy_metadata.ELA import ELA
from pm4py.objects.log.importer.xes import factory as xes_importer_factory
from pm4py.objects.log.exporter.xes import factory as xes_exporter
import pandas as pd
event_log = "paper_sample.xes"
log = xes_importer_factory.apply(event_log)
# privacyExtension Part
prefix = 'privacy:'
uri = 'paper_version_uri/privacy.xesext'
privacy = privacyExtension(log, prefix, uri)
privacy.set_anonymizer(operation='suppression', level='event', target='org:resource')
statistics={}
statistics['no_modified_traces'] = 15
statistics['no_modified_events'] = 20
desired_analyses= {}
desired_analyses['1']='process discovery'
desired_analyses['2']='social network discovery'
message = privacy.set_optional_anonymizer(layer = 1, statistics=statistics, desired_analyses=desired_analyses, test='test' )
print(message)
layer = privacy.get_anonymizer(layer=1)
anon = privacy.get_anonymizations()
xes_exporter.export_log(log, 'ext_paper_sample.xes')
# ELA Part
try:
log_name = log.attributes['concept:name']
except Exception as e:
log_name = "No mame is given for the event log!"
ela = ELA()
ela_desired_analyses = ['analysis 1', 'analysis 2']
data = {'Name': ['Tom', 'nick', 'krish', 'jack'], 'Age': [20, 21, 19, 18]}
df = pd.DataFrame(data)
ela.set_values(origin=log_name, method='method 1', desired_analyses=ela_desired_analyses,data=df.copy())
ela.create_xml('ela_paper_sample.xml')
print(ela.get_values()['data'])
ela = ela.read_xml("ela_paper_sample.xml")
print(ela)
Project details
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distribution
Built Distribution
File details
Details for the file p_privacy_metadata-0.0.5.tar.gz
.
File metadata
- Download URL: p_privacy_metadata-0.0.5.tar.gz
- Upload date:
- Size: 3.9 kB
- Tags: Source
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/1.13.0 pkginfo/1.4.2 requests/2.18.4 setuptools/41.0.1 requests-toolbelt/0.9.1 tqdm/4.32.2 CPython/3.6.5
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 5a71352b7c0b436cd86abf9ed3852c16bf31ade343f7d258c9cd5807bcabc5b2 |
|
MD5 | 5a7f585daa0b4d136916374e8397ef89 |
|
BLAKE2b-256 | d415c4bacb131d4dff972df64765fa4c250ee63832227cbbd2cd214b26f25ac7 |
File details
Details for the file p_privacy_metadata-0.0.5-py3-none-any.whl
.
File metadata
- Download URL: p_privacy_metadata-0.0.5-py3-none-any.whl
- Upload date:
- Size: 16.8 kB
- Tags: Python 3
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/1.13.0 pkginfo/1.4.2 requests/2.18.4 setuptools/41.0.1 requests-toolbelt/0.9.1 tqdm/4.32.2 CPython/3.6.5
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 11be85438d241fc7c5dfefc328b89af8480e3c46241fa0d894e492cca875a792 |
|
MD5 | 9ae46259cc0b46f1dceabd28900db0c9 |
|
BLAKE2b-256 | 79b6848e483c9b08735ff88cf0eb19f3a3b20b8052334683001a524446703580 |