Skip to main content

Extrapolation methods for complete basis sets

Project description


packaging-extrapolation Manual

Static Badge Static Badge Static Badge doi

About

  • This package contains partial extrapolation methods in quantum chemistry, written using the extrapolation method proposed in the literature. Extrapolation to the CBS limit can be done by entering two successive energies.
  • Additionally, the web calculator is availble at the internet: https://xizaokaiz-1324489885.cos.ap-shanghai.myqcloud.com/homepage.html
  • If you found this site useful for your work please cite it as: Xi, Z.; Ding, Y.; Tian, X. Building a New Platform for Significantly Improving Performance of Hartree–Fock and CCSD(T) Correlation Energy Based on Two-Point Complete Basis Set Extrapolation Schemes. J. Phys. Chem. A 2024, 128 (18), 3742–3749. https://doi.org/10.1021/acs.jpca.4c01712

Quickly Use

  • Please use the pip command to install: pip install packaging-extrapolation or python3 -m pip install packaging-extrapolation
  • Please make sure the package is the latest: pip install --upgrade packaging-extrapolation
  • After installation, test the example in src/packaging_extrapolation/examples/examples_energy.py to see if you get results.
    • Extrapolation Method Calls: python examples_energy.py -m "Klopper_1986" -xe -76.0411795 -ye -76.0603284 -low 2 -high 3 -a 4.25
    • -m: extrapolation method name.
    • -xe: energy for E(X).
    • -ye: energy for E(Y).
    • -low: cardinal number for X.
    • -high: cardinal number for Y.
    • -a: extrapolation parameter alpha/beta.

Tow-Point Extrapolation Schemes

Method Two-point From Name Reference
Klopper-1986 $E_{CBS}=\frac{E(Y)e^{-α\sqrt{X}}-E(X)e^{-α\sqrt{Y}}}{e^{-α\sqrt{X}}-e^{-α\sqrt{Y}}}$ Klopper_1986 https://doi.org/10.1016/0166-1280(86)80068-9
Feller-1992 $E_{CBS}=\frac{E(Y)e^{-αX}-E(X)e^{-αY}}{e^{-αX}-e^{-αY}}$ Feller_1992 https://doi.org/10.1063/1.462652
Truhlar-1998 (Hartree-Fock) $E_{CBS}=\frac{E(Y)X^{-\alpha}-E(X)Y^{-\alpha}}{X^{-\alpha}-Y^{-\alpha}}$ Truhlar_1998 https://doi.org/10.1016/S0009-2614(98)00866-5
Jensen-2001 $E_{CBS}=\frac{E(Y)(X+1)e^{-α\sqrt{X}}-E(X)(Y+1))e^{-α\sqrt{Y}}}{(X+1)e^{-α\sqrt{X}}-(Y+1)e^{-α\sqrt{Y}}}$ Jensen_2001 https://doi.org/10.1063/1.1413524
Schwenke-2005 $E_{CBS}=[E(Y)-E(X)]\alpha+E(X)$ Schwenke_2005 https://doi.org/10.1063/1.1824880
Martin-1996 $E_{CBS}=\frac{E(Y)(X+1/2)^{-\beta}-E(X)(Y+1/2)^{-\beta}}{(X+1/2)^{-\beta}-(Y+1/2)^{-\beta}}$ Martin_1996 https://doi.org/10.1016/0009-2614(96)00898-6
Truhlar-1998 (Correlation) $E_{CBS}=\frac{E(Y)X^{-\beta}-E(X)Y^{-\beta}}{X^{-\beta}-Y^{-\beta}}$ Truhlar_1998 https://doi.org/10.1016/S0009-2614(98)00866-5
Huh-2003 $E_{CBS}=\frac{E(Y)(X+\beta)^{-3}-E(X)(Y+\beta)^{-3}}{(X+\beta)^{-3}-(Y+\beta)^{-3}}$ HuhLee_2003 https://doi.org/10.1063/1.1534091
Bakowies-2007 $E_{CBS}=\frac{E(Y)(X+1)^{-\beta}-E(X)(Y+1)^{-\beta}}{(X+1)^{-\beta}-(Y+1)^{-\beta}}$ Bkw_2007 https://doi.org/10.1063/1.2749516
OAN(C) $E_{CBS}=\frac{3^3E(Y)-\beta^3E(X)}{3^3-\beta^3}$ OAN_C https://doi.org/10.1002/jcc.23896

Another Use

  • If you need to calculate the extrapolation energy of more systems, please refer to the following examples:
from packaging_extrapolation import UtilTools
from packaging_extrapolation.Extrapolation import FitMethod
import pandas as pd
import numpy as np

"""
Calculate more systems.
"""

if __name__ == "__main__":
    # Input file.
    data = pd.read_csv('../data/hf.CSV')

    # Extrapolation model.
    model = FitMethod()
    # The E(X) and E(Y).
    x_energy_list, y_energy_list = data['aug-cc-pvdz'], data['aug-cc-pvtz']
    # Using Klopper-1986 method and alpha=4.25, extrapolate to the CBS limit at the AV {D, T}Z basis set pair.
    low_card, high_card, alpha, method_name = 2, 3, 4.25, 'Klopper_1986'
    result = UtilTools.train_alpha(model=model,
                                   method=method_name,
                                   x_energy_list=x_energy_list,
                                   y_energy_list=y_energy_list,
                                   low_card=low_card,
                                   high_card=high_card,
                                   alpha=alpha)
    for i in range(len(result)):
        print(result[i], 'Eh')
    df = pd.DataFrame()
    df['CBS Energy'] = result
    # Output file.
    df.to_csv('CBS_Energy.csv', index=False)
  • The input file should be in .csv format and have the following content:
mol,aug-cc-pvdz,aug-cc-pvtz
HCN,-92.8880397,-92.9100033
HCO,-113.2672513,-113.2947633
HNO,-129.8114596,-129.8401888
HO2,-150.2024221,-150.239531
N2O,-183.7105405,-183.7530387
NH2,-55.5749363,-55.5878344
NH3,-56.1972947,-56.2127423
NO2,-204.0664514,-204.1137363
Functions
UtilTools.calc_MAD(y_true, y_pred): Calculate the Mean Absolute Deviation (kcal/mol).
UtilTools.calc_max_MAD(y_true, y_pred): Calculate the Maximum Absolute Deviation (kcal/mol).
UtilTools.calc_min_MAD(y_true, y_pred): Calculate the Minimum Absolute Deviation (kcal/mol).
UtilTools.calc_RMSE(y_true, y_pred): Calculate the Root Mean Square Deviation (kcal/mol).
UtilTools.calc_MSD(y_true, y_pred): Calculate the Mean Square Deviation (kcal/mol).
UtilTools.calc_MaxPosMAD(y_true, y_pred): Calculate the Maximum Positive Deviation (kcal/mol).
UtilTools.train_alpha(*, model, method, x_energy_list, y_energy_list, alpha, low_card, high_card): Calculate extrapolated energy.
UtilLog.extract_energy(input_path, output_path): Extracting energy from many log files.
UtilLog.train_all(*, model, method, x_energy_list, y_energy_list, low_card, high_card, limit_list, init_guess=0.001, temp='RMSD') : Optimizing extrapolation parameters with RMSD or MAD.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

packaging-extrapolation-1.1.0.tar.gz (25.4 kB view details)

Uploaded Source

Built Distribution

packaging_extrapolation-1.1.0-py3-none-any.whl (26.0 kB view details)

Uploaded Python 3

File details

Details for the file packaging-extrapolation-1.1.0.tar.gz.

File metadata

File hashes

Hashes for packaging-extrapolation-1.1.0.tar.gz
Algorithm Hash digest
SHA256 7453efdd1b3abe9005de36fe07839ba6a02abe6a15a0525f4fb914e97e370fc1
MD5 37160b9d1fb05c7ebe7b253e91b69939
BLAKE2b-256 7895627245e658c8c2c8b2679829d2fac249035bdd2a54ade8aaf2b44ded1d4e

See more details on using hashes here.

File details

Details for the file packaging_extrapolation-1.1.0-py3-none-any.whl.

File metadata

File hashes

Hashes for packaging_extrapolation-1.1.0-py3-none-any.whl
Algorithm Hash digest
SHA256 b2ce5bdcf9cb4dddf27ed54e642196da163e7852a707226f20cca06ad60ba9d9
MD5 18602aac66280242b6b150b823abc895
BLAKE2b-256 f36610742e616cd58f290b7928130848718b5a121a949fb784c06dd5a0021287

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page